Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Gyrogroups are generalized groups, which are best motivated by the algebra of Möbius transformations of the complex open unit disc. Groups are classified into commutative and non-commutative groups and, in full analogy, gyrogroups are classified into gyrocommutative and non-gyrocommutative gyrogroups. Some commutative groups admit scalar multiplication, giving rise to vector spaces. In full analogy, some gyrocommutative gyrogroups admit scalar multiplication, giving rise to gyrovector spaces. Furthermore, vector spaces form the algebraic setting for the standard model of Euclidean geometry and, in full analogy, gyrovector spaces form the algebraic setting for various models ofthe hyperbolic geometry of Bolyai and Lobachevsky.]
Published: Jan 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.