Access the full text.
Sign up today, get DeepDyve free for 14 days.
[For a polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f:\{ -1,1\}^{n}\longrightarrow \mathbb{C}$$ \end{document}, we define the partition function as the average of eλf(x) over all points x ∈ {−1, 1}n, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\lambda \in \mathbb{C}$$ \end{document} is a parameter. We present a quasi-polynomial algorithm, which, given such f, λ and ε > 0 approximates the partition function within a relative error of ε in NO(lnn−lnε) time provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\vert \lambda \vert \leq (2L\sqrt{\deg f})^{-1}$$ \end{document}, where L = L( f) is a parameter bounding the Lipschitz constant of f from above and N is the number of monomials in f. As a corollary, we obtain a quasi-polynomial algorithm, which, given such an f with coefficients ± 1 and such that every variable enters not more than 4 monomials, approximates the maximum of f on { − 1, 1}n within a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O\left (\delta ^{-1}\sqrt{\deg f}\right )$$ \end{document}, provided the maximum is Nδ for some 0 < δ ≤ 1. If every variable enters not more than k monomials for some fixed k > 4, we are able to establish a similar result when δ ≥ (k − 1)∕k.]
Published: May 9, 2017
Keywords: 90C09; 68C25; 68W25; 68R05
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.