Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Journey Through Discrete MathematicsOn Codimension One Embedding of Simplicial Complexes

A Journey Through Discrete Mathematics: On Codimension One Embedding of Simplicial Complexes [We study d-dimensional simplicial complexes that are PL embeddable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^{d+1}$$ \end{document}. It is shown that such a complex must satisfy a certain homological condition. The existence of this obstruction allows us to provide a systematic approach to deriving upper bounds for the number of top-dimensional faces of such complexes, particularly in low dimensions.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Journey Through Discrete MathematicsOn Codimension One Embedding of Simplicial Complexes

Editors: Loebl, Martin; Nešetřil, Jaroslav; Thomas, Robin
Springer Journals — May 10, 2017

Loading next page...
 
/lp/springer-journals/a-journey-through-discrete-mathematics-on-codimension-one-embedding-of-RPn9Pij5MG
Publisher
Springer International Publishing
Copyright
© Springer International publishing AG 2017
ISBN
978-3-319-44478-9
Pages
207 –219
DOI
10.1007/978-3-319-44479-6_9
Publisher site
See Chapter on Publisher Site

Abstract

[We study d-dimensional simplicial complexes that are PL embeddable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^{d+1}$$ \end{document}. It is shown that such a complex must satisfy a certain homological condition. The existence of this obstruction allows us to provide a systematic approach to deriving upper bounds for the number of top-dimensional faces of such complexes, particularly in low dimensions.]

Published: May 10, 2017

There are no references for this article.