Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Siegel’s Lemma is concerned with finding a “small” nontrivial integer solution of a large system of homogeneous linear equations with integer coefficients, where the number of variables substantially exceeds the number of equations (for example, n equations and N variables with N ≥ 2n), and “small” means small in the maximum norm. Siegel’s Lemma is a clever application of the Pigeonhole Principle, and it is a pure existence argument. The basically combinatorial Siegel’s Lemma is a key tool in transcendental number theory and diophantine approximation. David Masser (a leading expert in transcendental number theory) asked the question whether or not the Siegel’s Lemma is best possible. Here we prove that the so-called “Third Version of Siegel’s Lemma” is best possible apart from an absolute constant factor. In other words, we show that no other argument can beat the Pigeonhole Principle proof of Siegel’s Lemma (apart from an absolute constant factor). To prove this, we combine a concentration inequality (i.e., Fourier analysis) with combinatorics.]
Published: Oct 6, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.