Access the full text.
Sign up today, get DeepDyve free for 14 days.
The data sparsity and prediction quality are recognized as the key challenges in the existing recommender Systems. Most of the existing recommender systems depend on collaborating flitering (CF) method which mainly leverages the user-item rating matrix representing the relationship between users and items. However, the CF-based method sometimes fails to provide accurate information for predicting recommendations as there is an assumption that the relationship between attributes of items is independent and identically distributed. In real applications, there are often several kinds of coupling relationships or connections existed among users or items. In this paper, we incorporate the coupling relationship analysis to capture the under-discovered relationships between items and aim to make the ratings more reasonable. Next, we propose a neighborhood-based matrix factorization model, which considers both the explicit and implicit correlations between items, to suggest the more reasonable items to user. The experimental evaluations demonstrate that the proposed algorithms outperform the state-of-the-art algorithms in the warm- and cold-start settings.
Annals of Data Science – Springer Journals
Published: Dec 18, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.