Access the full text.
Sign up today, get DeepDyve free for 14 days.
A new class of distributions with increasing, decreasing, bathtub-shaped and unimodal hazard rate forms called generalized quadratic hazard rate-power series distribution is proposed. The new distribution is obtained by compounding the generalized quadratic hazard rate and power series distributions. This class of distributions contains several important distributions appeared in the literature, such as generalized quadratic hazard rate-geometric, -Poisson, -logarithmic, -binomial and -negative binomial distributions as special cases. We provide comprehensive mathematical properties of the new distribution. We obtain closed-form expressions for the density function, cumulative distribution function, survival and hazard rate functions, moments, mean residual life, mean past lifetime, order statistics and moments of order statistics; certain characterizations of the proposed distribution are presented as well. The special distributions are studied in some details. The maximum likelihood method is used to estimate the unknown parameters. We propose to use EM algorithm to compute the maximum likelihood estimators of the unknown parameters. It is observed that the proposed EM algorithm can be implemented very easily in practice. One data set has been analyzed for illustrative purposes. It is observed that the proposed model and the EM algorithm work quite well in practice.
Annals of Data Science – Springer Journals
Published: Mar 19, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.