Access the full text.
Sign up today, get DeepDyve free for 14 days.
[This chapter focuses on the mathematical formulations of the turbulent kinetic energy k and specific dissipation rate ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} Shear-Stress Transport (SST) turbulence model proposed by Menter [3, 4] to provide a closure model to the Boussinesq-type counterparts of the new hypothesis on the anisotropic Reynolds stress tensor discussed in Chap. 5. The k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST closure model of Menter [3, 4] is relying on the generalised Boussinesq hypothesis on the Reynolds stress tensor (1.113) with a modification to the definition of the scalar eddy viscosity coefficient. In other words, the k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST turbulence model assumes that the Reynolds stress tensor (1.54) is related to the mean rate-of-strain (deformation) tensor (1.114) and the turbulent kinetic energy k defined by Eq. (1.63). The reason for the choice of the k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST model as a baseline closure model is that it is a well-known fact that the k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST formulation of Menter [3, 4] is validated against many industrially relevant turbulent flow problems with great success [5]. It is also assumed that the k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST turbulence model can capture the shear stress distribution correctly in the boundary layer and it is applicable to adverse pressure gradient flows [6]. However, it is important to highlight from theoretical and practical aspects that any other existing eddy viscosity closure model can be employed in conjunction with the Boussinesq-type counterparts of the new hypothesis on the anisotropic Reynolds stress tensor proposed in Chap. 5.]
Published: Feb 27, 2019
Keywords: Two-equation engineering turbulence models; k - ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} Shear-Stress Transport (SST) closure model; Mathematical derivations; Turbulent kinetic energy transport equation; Specific dissipation rate equation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.