Access the full text.
Sign up today, get DeepDyve free for 14 days.
[This chapter focuses on those theoretical principles which are required to formulate physically correct mathematical closure equations for modelling turbulent flows. The importance of the Galilean invariance in the Newtonian physics is to ensure that the conservation laws of turbulent flow motions remain the same in any two reference frames. Therefore, we devote a particular attention to the Galilean transformation and the derivation of the Galilean invariance of the Reynolds momentum equation (1.43), the Reynolds stress tensor (1.54), the rate-of-strain tensor (1.114) and the generalised Boussinesq hypothesis on the Reynolds stresses (1.113). The principle of Galilean invariance for the Reynolds stress tensor will also be taken into account in the proposal to the new hypothesis on the anisotropic Reynolds stress tensor in Chap. 5. In addition to the Galilean invariance, the consistency of physical dimensions, the coordinate system independence of physical laws and the realisability condition have also been considered as relevant criteria in the mathematical description of the Reynonds stress tensor. The derivations included in the present chapter make an attempt to bring closer a theoretically demanding advanced subject to a wider audience.]
Published: Feb 27, 2019
Keywords: Galilean transformation; Galilean invariance; Frame rotation invariance; Mean rate-of-strain (deformation); Reynolds stress tensor; Realisability requirement; Cauchy–Schwartz inequality
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.