Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Novel Stock Trading Model based on Reinforcement Learning and Technical Analysis

A Novel Stock Trading Model based on Reinforcement Learning and Technical Analysis This study investigates the potential of using reinforcement learning (RL) to establish a financial trading system (FTS), taking into account the main constraint imposed by the stock market, e.g., transaction costs. More specifically, this paper shows the inferior performance of the pure reinforcement learning model when it is applied in a multi-dimensional and noisy stock market environment. To solve this problem and to get a practical and reasonable trading strategies process, a modified RL model is proposed based on the actor-critic method where we have amended the actor by incorporating three metrics from technical analysis. The results show significant improvement compared with traditional trading strategies. The reliability of the model is verified by experimental results on financial data (S&P500 index) and a fair evaluation of the proposed method and pure RL and three benchmarks is demonstrated. Statistical analysis proves that a combination of a) technical analysis (role-based strategies) and b) RL (machine learning strategies) and c) restricting the action of the RL policy network with a few realistic conditions results in trading decisions with higher investment return rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Data Science Springer Journals

A Novel Stock Trading Model based on Reinforcement Learning and Technical Analysis

Loading next page...
 
/lp/springer-journals/a-novel-stock-trading-model-based-on-reinforcement-learning-and-dD8Edcl1Zp

References (24)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
2198-5804
eISSN
2198-5812
DOI
10.1007/s40745-023-00469-1
Publisher site
See Article on Publisher Site

Abstract

This study investigates the potential of using reinforcement learning (RL) to establish a financial trading system (FTS), taking into account the main constraint imposed by the stock market, e.g., transaction costs. More specifically, this paper shows the inferior performance of the pure reinforcement learning model when it is applied in a multi-dimensional and noisy stock market environment. To solve this problem and to get a practical and reasonable trading strategies process, a modified RL model is proposed based on the actor-critic method where we have amended the actor by incorporating three metrics from technical analysis. The results show significant improvement compared with traditional trading strategies. The reliability of the model is verified by experimental results on financial data (S&P500 index) and a fair evaluation of the proposed method and pure RL and three benchmarks is demonstrated. Statistical analysis proves that a combination of a) technical analysis (role-based strategies) and b) RL (machine learning strategies) and c) restricting the action of the RL policy network with a few realistic conditions results in trading decisions with higher investment return rates.

Journal

Annals of Data ScienceSpringer Journals

Published: May 11, 2023

Keywords: Reinforcement learning; Asset trading; Machine learning; Investment portfolio; Stock exchange

There are no references for this article.