Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A number theoretic estimate of Davenport from a functional analytic viewpoint

A number theoretic estimate of Davenport from a functional analytic viewpoint We consider the problem of the identification of continuous functionsf∶[0, 1]→R, by means of the sums\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sum\limits_{a = 1}^n {f\left( {\frac{a}{n}} \right)} $$\end{document}. This is not possible, in general, but we prove that it may be the case under auxiliary conditions. We also study the behaviour of a well known exceptional function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ANNALI DELL UNIVERSITA DI FERRARA Springer Journals

A number theoretic estimate of Davenport from a functional analytic viewpoint

ANNALI DELL UNIVERSITA DI FERRARA , Volume 45 (1) – Jan 1, 1999

Loading next page...
 
/lp/springer-journals/a-number-theoretic-estimate-of-davenport-from-a-functional-analytic-9v1XyKrc7N
Publisher
Springer Journals
Copyright
Copyright © Università degli Studi di Ferrara 1999
ISSN
0430-3202
eISSN
1827-1510
DOI
10.1007/bf02826085
Publisher site
See Article on Publisher Site

Abstract

We consider the problem of the identification of continuous functionsf∶[0, 1]→R, by means of the sums\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sum\limits_{a = 1}^n {f\left( {\frac{a}{n}} \right)} $$\end{document}. This is not possible, in general, but we prove that it may be the case under auxiliary conditions. We also study the behaviour of a well known exceptional function.

Journal

ANNALI DELL UNIVERSITA DI FERRARASpringer Journals

Published: Jan 1, 1999

Keywords: 26A15; 42A16; 11M06

References