Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Associated with any Schur-class function S((z)) (i.e., a contractive operator-valued holomorphic function on the unit disk) is the de Branges- Rovnyak kernel Ks((z,C)) = [=([I-S(z))S(C)) * ]/(1–) and the reproducing kernel Hilbert space H(KS) which serves as the canonical functional-model statespace for a coisometric transfer-function realization s((z)) = D+z(A)1B of S. To obtain a canonical functional-model unitary transfer-function realization, it is now well understood that one must work with a certain (2 × 2)- block matrix kernel and associated two-component reproducing kernel Hilbert space. In this paper we indicate how these ideas extend to the multivariable setting where the unit disk is replaced by the unit polydisk in d complex variables. For the case d> 2, one must replace the Schur class by the more restrictive Schur-Agler class (defined in terms of the validity of a certain von Neumann inequality) in order to get a good realization theory paralleling the single-variable case. This work represents one contribution to the recent extension of the state-space method to multivariable settings, an area of research where Israel Gohberg was a prominent and leading practitioner.]
Published: Jan 3, 2012
Keywords: Operator-valued Schur-Agler functions; Agler decomposition; unitary realization.
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.