Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern RecognitionAlmost-Periodic Interpolation and Approximation

A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic... [In this chapter, following [41], we present a method to interpolate or approximate a given function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb G}\rightarrow {\mathbb C}$$\end{document} (or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:{\mathbb H}\rightarrow {\mathbb C}$$\end{document}) by an AP functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F({\mathbb G})$$\end{document}, i.e., AP functions whose Fourier transform is supported in a given discrete and finite set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subset \widehat{\mathbb G}$$\end{document}. (See Sect. 2.3.1.) In order to do this, we generalize the well-known decomposition of the 2D Fourier transform on the plane in polar coordinates, via the Fourier-Bessel operator. In the first part of the chapter, exploiting the deep connection between (4.1) and the group of rototranslations SE(2), we generalize the former to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F({\mathbb G})$$\end{document} functions. In particular, we show how a discrete operator that we call the generalized Fourier-Bessel operator plays a crucial role in this generalization. We then consider the problem of interpolating functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi :{\mathbb G}\rightarrow {\mathbb C}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb K}$$\end{document}-invariant finite sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{E}\subset {\mathbb G}$$\end{document} via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F({\mathbb G})$$\end{document} functions. The last part of the chapter is devoted to particularize (and slightly generalize) the above results to the relevant case for image processing, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}=SE(2,N)$$\end{document}. Indeed we present numerical algorithms for the (exact) evaluation, interpolation, and approximation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F(SE(2,N))$$\end{document} functions on finite sets of spatial samples \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{E}\subset {\mathbb R}^2$$\end{document}, invariant under the action of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}_N$$\end{document}. This is an instance of a very general problem, and can be seen as a generalization of the discrete Fourier Transform and its inverse, that act on regular square grids, i.e., invariant under the the action of SE(2, 4).] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern RecognitionAlmost-Periodic Interpolation and Approximation

Part of the SpringerBriefs in Mathematics Book Series
Springer Journals — Jun 12, 2018

Loading next page...
 
/lp/springer-journals/a-semidiscrete-version-of-the-citti-petitot-sarti-model-as-a-plausible-Qv72qVdn0W
Publisher
Springer International Publishing
Copyright
© The Author(s) 2018
ISBN
978-3-319-78481-6
Pages
43 –52
DOI
10.1007/978-3-319-78482-3_4
Publisher site
See Chapter on Publisher Site

Abstract

[In this chapter, following [41], we present a method to interpolate or approximate a given function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb G}\rightarrow {\mathbb C}$$\end{document} (or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:{\mathbb H}\rightarrow {\mathbb C}$$\end{document}) by an AP functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F({\mathbb G})$$\end{document}, i.e., AP functions whose Fourier transform is supported in a given discrete and finite set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subset \widehat{\mathbb G}$$\end{document}. (See Sect. 2.3.1.) In order to do this, we generalize the well-known decomposition of the 2D Fourier transform on the plane in polar coordinates, via the Fourier-Bessel operator. In the first part of the chapter, exploiting the deep connection between (4.1) and the group of rototranslations SE(2), we generalize the former to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F({\mathbb G})$$\end{document} functions. In particular, we show how a discrete operator that we call the generalized Fourier-Bessel operator plays a crucial role in this generalization. We then consider the problem of interpolating functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi :{\mathbb G}\rightarrow {\mathbb C}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb K}$$\end{document}-invariant finite sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{E}\subset {\mathbb G}$$\end{document} via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F({\mathbb G})$$\end{document} functions. The last part of the chapter is devoted to particularize (and slightly generalize) the above results to the relevant case for image processing, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}=SE(2,N)$$\end{document}. Indeed we present numerical algorithms for the (exact) evaluation, interpolation, and approximation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{AP}}}_F(SE(2,N))$$\end{document} functions on finite sets of spatial samples \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{E}\subset {\mathbb R}^2$$\end{document}, invariant under the action of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}_N$$\end{document}. This is an instance of a very general problem, and can be seen as a generalization of the discrete Fourier Transform and its inverse, that act on regular square grids, i.e., invariant under the the action of SE(2, 4).]

Published: Jun 12, 2018

Keywords: Hankel transform; Almost-periodic functions; Fourier-Bessel operator; Rotationally invariant grids

There are no references for this article.