# A Simple Introduction to the Mixed Finite Element MethodRaviart-Thomas Spaces

A Simple Introduction to the Mixed Finite Element Method: Raviart-Thomas Spaces [In this chapter we introduce Raviart–Thomas spaces, which constitute the most classical finite element subspaces of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H(\mathrm{div};\varOmega )$$ \end{document}, and prove their main interpolation and approximation properties. Several aspects of our analysis follow the approaches from [16, 50, 52].] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

# A Simple Introduction to the Mixed Finite Element MethodRaviart-Thomas Spaces

Part of the SpringerBriefs in Mathematics Book Series
Springer Journals — Dec 9, 2013
30 pages

/lp/springer-journals/a-simple-introduction-to-the-mixed-finite-element-method-raviart-kSW0sdIvQW
Publisher
Springer International Publishing
ISBN
978-3-319-03694-6
Pages
61 –91
DOI
10.1007/978-3-319-03695-3_3
Publisher site
See Chapter on Publisher Site

### Abstract

[In this chapter we introduce Raviart–Thomas spaces, which constitute the most classical finite element subspaces of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H(\mathrm{div};\varOmega )$$ \end{document}, and prove their main interpolation and approximation properties. Several aspects of our analysis follow the approaches from [16, 50, 52].]

Published: Dec 9, 2013

Keywords: Main Interpolation; Lagrangian Finite Element; Raviart Thomas Interpolation Operator; Piola Transformation; Local Interpolants