Access the full text.
Sign up today, get DeepDyve free for 14 days.
[This chapter investigates the fundamental properties of the behaviour of the SD oscillatorSD oscillator of the perturbed degenerate case. As we have already seen, there is a degenerate singularityDegenerate singularity due to the change of hyperbolicity whenHyperbolicity parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} varies crossing α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =1$$\end{document}, where the system is transformed from a single well dynamics to that of a double-wellDouble-well dynamics, in other words from a single stability to a bistabilityMultiple stability. This singularity can also be treated as the transition from non snap through buckling (α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}) to a snap through bucklingSnap-through buckling (α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document}) under a static load. We turn our attention to the interesting perturbed behaviour of the complex codimension two bifurcations of the oscillator at the degenerate equilibrium point (0, 0) near α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =1$$\end{document}. It is found that the universal unfolding with two parameters is the perturbed SD oscillator with a nonlinear visco-damping. This universal unfolding reveals the complicated codimension two bifurcation phenomena in the physical parameter space with homoclinic bifurcation, closed orbit bifurcation, Hopf bifurcations and also the pitchfork bifurcations demonstrated at the same time when the geometrical parameter varies.]
Published: Sep 28, 2016
Keywords: Degenerate Equilibrium Point; Universal Unfolding; Physical Parameter Space; Homoclinic Bifurcation; Hopf Bifurcation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.