Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Survey of Fractal Dimensions of NetworksMass Dimension for Infinite Networks

A Survey of Fractal Dimensions of Networks: Mass Dimension for Infinite Networks [In this chapter we consider a sequence {𝔾t}t=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ {\mathbb {G}}_t \}_{t=1}^{\infty }$$ \end{document} of complex networks such that Δt≡diam(𝔾t)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\varDelta _{\hspace {0.07em} {t}} \equiv \mathit {diam}( {\mathbb {G}}_t ) \rightarrow \infty $$ \end{document} as t →∞.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Survey of Fractal Dimensions of NetworksMass Dimension for Infinite Networks

Part of the SpringerBriefs in Computer Science Book Series
Springer Journals — May 30, 2018

Loading next page...
 
/lp/springer-journals/a-survey-of-fractal-dimensions-of-networks-mass-dimension-for-infinite-FCJU8oWqQG
Publisher
Springer International Publishing
Copyright
© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018
ISBN
978-3-319-90046-9
Pages
45 –50
DOI
10.1007/978-3-319-90047-6_6
Publisher site
See Chapter on Publisher Site

Abstract

[In this chapter we consider a sequence {𝔾t}t=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ {\mathbb {G}}_t \}_{t=1}^{\infty }$$ \end{document} of complex networks such that Δt≡diam(𝔾t)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\varDelta _{\hspace {0.07em} {t}} \equiv \mathit {diam}( {\mathbb {G}}_t ) \rightarrow \infty $$ \end{document} as t →∞.]

Published: May 30, 2018

There are no references for this article.