Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Modern high-throughput assays yield detailed characterizations of the genomic, transcriptomic, and proteomic states of biological samples, enabling us to probe the molecular mechanisms that regulate hematopoiesis or give rise to hematological disorders. At the same time, the high dimensionality of the data and the complex nature of biological interaction networks present significant analytical challenges in identifying causal variations and modeling the underlying systems biology. In addition to identifying significantly disregulated genes and proteins, integrative analysis approaches that allow the investigation of these single genes within a functional context are required. This chapter presents a survey of current computational approaches for the statistical analysis of high-dimensional data and the development of systems-level models of cellular signaling and regulation. Specifically, we focus on multi-gene analysis methods and the integration of expression data with domain knowledge (such as biological pathways) and other gene-wise information (e.g., sequence or methylation data) to identify novel functional modules in the complex cellular interaction network.]
Published: Dec 6, 2014
Keywords: Statistical analysis; High-throughput data; Microarrays; Sequencing; NGS; Genomics; Machine learning; Network models
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.