Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Granulocyte differentiation and immune response function is a dynamic process governed by a highly coordinated transcriptional program that regulates cellular fate and function, often in a context-dependent manner. Advances in high-throughput technologies and bioinformatics have allowed us to better understand complex biological processes at the genomic and proteomic levels. Components of the environmental milieu, along with the molecular mechanisms that drive the development, activation, and regulation of granulocytes, have since been elucidated. In this chapter, we present the intricate network in which these elements come together and influence one another. In particular, we describe the critical roles of transcription factors like PU.1, CCAAT/enhancer-binding protein (C/EBPα; alpha), C/EBPε (epsilon), and growth factor independent-1 (Gfi-1). We also review granulocyte colony-stimulating factor (G-CSF) receptor-induced signal transduction pathways, their influence on proliferation and differentiation, and the cooperativity of cytokines and chemokines in this process.]
Published: Dec 6, 2014
Keywords: Systems biology; Phagocyte; Granulocyte; Neutrophil; Macrophage; Transcription factor; Granulopoiesis; Chemotaxis; Phagocytosis; Apoptosis
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.