Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract In the present work, the governing equations based on theory of irreversible thermodynamics is deduced by introducing two internal variables to characterize the phase transformation and finite plastic deformation evolution for NiTi shape memory alloy. Thus a three-dimensional dynamic constitutive model is established by summarizing the governing equations for phase transformation and plastic deformation under high strain rate loading conditions. By adopting a stress compensation algorithm to update the stress tensor, the phenomenological-based constitutive model is embedded into ABAQUS finite element software as user material subroutine with FORTRAN code. Thus the numerical simulation of dynamic responses of NiTi alloy is successfully implemented. The numerical simulation results are in good agreement with the experimental data, validating the feasibility of this proposed model. Comparison between the simulation results and the experimental data indicates that the proposed model can well describe not only the different deformation stages of NiTi alloy but also its constitutive behavior subjected to different high strain rates.
"Acta Mechanica Solida Sinica" – Springer Journals
Published: Jun 1, 2019
Keywords: Theoretical and Applied Mechanics; Surfaces and Interfaces, Thin Films; Classical Mechanics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.