Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract For low-cost unmanned aerial vehicles, it is practically important to estimate flight height using the measurements from low-cost accelerometer and barometer sensors. In this paper, we propose a simple two-step strategy to fuse the measurements from the two sensors. In the first step, two different filters, moving average filter and Kalman filter, are adopted to pre-process the measurements from accelerometer and barometer, respectively. In the second step, a properly designed complementary filter is employed for high-precision height estimation. Several experimental comparison results on a small-size quadrotor demonstrate the effectiveness of the strategy. The strategy is further combined with a simple height controller to yield a height feedback-control scheme. The closed-loop experimental results show that 8-cm and 20-cm control accuracies are achieved for 5-m- and 10-m-height tracking tasks, respectively.
"Aerospace Systems" – Springer Journals
Published: Aug 1, 2019
Keywords: Aerospace Technology and Astronautics; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.