Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The extension problem for abelian groups (as a special case of the general group-theoretical question formulated by O. Schreier) consists in constructing a group from a normal subgroup and the corresponding factor group. The classical way of discussing extensions is via factor sets which we follow in our presentation (simplified for the abelian case). Then we introduce Baer’s group Ext, an extremely important device, and discuss its fundamental properties. The intimate relationship between Hom and Ext has been pointed out by Eilenberg–MacLane [1]; this led to the interpretation of Ext as a derived functor of Hom and has been exploited extensively in Homological Algebra. Another important functor is Pext, the group of pure extensions, which appears unexpectedly as the first Ulm subgroup of Ext.]
Published: Jun 12, 2015
Keywords: Exact Sequence; Short Exact Sequence; Inverse Limit; Torsion Group; Pure Subgroup
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.