Active Particles, Volume 2A Stochastic-Statistical Residential Burglary Model with Finite Size Effects
Active Particles, Volume 2: A Stochastic-Statistical Residential Burglary Model with Finite Size...
Wang, Chuntian; Zhang, Yuan; Bertozzi, Andrea L.; Short, Martin B.
2019-08-23 00:00:00
[Transience of spatio-temporal clusters of residential burglary is well documented in empirical observations, and could be due to finite size effects anecdotally. However a theoretical understanding has been lacking. The existing agent-based statistical models of criminal behavior for residential burglary assume deterministic-time steps for arrivals of events. To incorporate random arrivals, this article introduces a Poisson clock into the model of residential burglaries, which could set time increments as independently exponentially distributed random variables. We apply the Poisson clock into the seminal deterministic-time-step model in Short et al. (Math Models Methods Appl Sci 18:1249–1267, 2008). Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/active-particles-volume-2-a-stochastic-statistical-residential-4q9XgJJRTv
Active Particles, Volume 2A Stochastic-Statistical Residential Burglary Model with Finite Size Effects
[Transience of spatio-temporal clusters of residential burglary is well documented in empirical observations, and could be due to finite size effects anecdotally. However a theoretical understanding has been lacking. The existing agent-based statistical models of criminal behavior for residential burglary assume deterministic-time steps for arrivals of events. To incorporate random arrivals, this article introduces a Poisson clock into the model of residential burglaries, which could set time increments as independently exponentially distributed random variables. We apply the Poisson clock into the seminal deterministic-time-step model in Short et al. (Math Models Methods Appl Sci 18:1249–1267, 2008). Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.]
Published: Aug 23, 2019
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.