Active Particles, Volume 2High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models
Active Particles, Volume 2: High-Resolution Positivity and Asymptotic Preserving Numerical...
Chertock, Alina; Kurganov, Alexander
2019-08-23 00:00:00
[Many microorganisms exhibit a special pattern formation at the presence of a chemoattractant, food, light, or areas with high oxygen concentration. Collective cell movement can be described by a system of nonlinear PDEs on both macroscopic and microscopic levels. The classical PDE chemotaxis model is the Patlak-Keller-Segel system, which consists of a convection-diffusion equation for the cell density and a reaction-diffusion equation for the chemoattractant concentration. At the cellular (microscopic) level, a multiscale chemotaxis models can be used. These models are based on a combination of the macroscopic evolution equation for chemoattractant and microscopic models for cell evolution. The latter is governed by a Boltzmann-type kinetic equation with a local turning kernel operator that describes the velocity change of the cells.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/active-particles-volume-2-high-resolution-positivity-and-asymptotic-0XhEfX0Ezj
Active Particles, Volume 2High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models
[Many microorganisms exhibit a special pattern formation at the presence of a chemoattractant, food, light, or areas with high oxygen concentration. Collective cell movement can be described by a system of nonlinear PDEs on both macroscopic and microscopic levels. The classical PDE chemotaxis model is the Patlak-Keller-Segel system, which consists of a convection-diffusion equation for the cell density and a reaction-diffusion equation for the chemoattractant concentration. At the cellular (microscopic) level, a multiscale chemotaxis models can be used. These models are based on a combination of the macroscopic evolution equation for chemoattractant and microscopic models for cell evolution. The latter is governed by a Boltzmann-type kinetic equation with a local turning kernel operator that describes the velocity change of the cells.]
Published: Aug 23, 2019
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.