Active Particles, Volume 2Kinetic Equations and Self-organized Band Formations
Active Particles, Volume 2: Kinetic Equations and Self-organized Band Formations
Griette, Quentin; Motsch, Sebastien
2019-08-23 00:00:00
[Self-organization is a ubiquitous phenomenon in nature which can be observed in a variety of different contexts and scales, with examples ranging from schools of fish, swarms of birds or locusts to flocks of bacteria. The observation of such global patterns can often be reproduced in models based on simple interactions between neighboring particles. In this paper we focus on two particular interaction dynamics closely related to the one described in the seminal paper of Vicsek and collaborators. After reviewing the current state of the art in the subject, we study a numerical scheme for the kinetic equation associated with the Vicsek models which has the specificity of reproducing many physical properties of the continuous models, like the preservation of energy and positivity and the diminution of an entropy functional. We describe a stable pattern of bands emerging in the dynamics proposed by Degond–Frouvelle–Liu dynamics and give some insights about their formation.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/active-particles-volume-2-kinetic-equations-and-self-organized-band-OrarvM2KLL
Active Particles, Volume 2Kinetic Equations and Self-organized Band Formations
[Self-organization is a ubiquitous phenomenon in nature which can be observed in a variety of different contexts and scales, with examples ranging from schools of fish, swarms of birds or locusts to flocks of bacteria. The observation of such global patterns can often be reproduced in models based on simple interactions between neighboring particles. In this paper we focus on two particular interaction dynamics closely related to the one described in the seminal paper of Vicsek and collaborators. After reviewing the current state of the art in the subject, we study a numerical scheme for the kinetic equation associated with the Vicsek models which has the specificity of reproducing many physical properties of the continuous models, like the preservation of energy and positivity and the diminution of an entropy functional. We describe a stable pattern of bands emerging in the dynamics proposed by Degond–Frouvelle–Liu dynamics and give some insights about their formation.]
Published: Aug 23, 2019
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.