Active Particles, Volume 2Kinetic Models for Pattern Formation in Animal Aggregations: A Symmetry and Bifurcation Approach
Active Particles, Volume 2: Kinetic Models for Pattern Formation in Animal Aggregations: A...
Buono, Pietro-Luciano; Eftimie, Raluca; Kovacic, Mitchell; van Veen, Lennaert
2019-08-23 00:00:00
[In this study we start by reviewing a class of 1D hyperbolic/kinetic models (with two velocities) used to investigate the collective behaviour of cells, bacteria or animals. We then focus on a restricted class of nonlocal models that incorporate various inter-individual communication mechanisms, and discuss how the symmetries of these models impact the various types of spatially heterogeneous and spatially homogeneous equilibria exhibited by these nonlocal models. In particular, we characterise a new type of equilibria that was not discussed before for this class of models, namely a relative equilibria. Then we simulate numerically these models and show a variety of spatio-temporal patterns (including classic equilibria and relative equilibria) exhibited by these models. We conclude by introducing a continuation algorithm (which takes into account the models symmetries) that allows us to track the solutions bifurcating from these different equilibria. Finally, we apply this algorithm to identify a D3-symmetric steady-state solution.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/active-particles-volume-2-kinetic-models-for-pattern-formation-in-GZXjqWCTSx
Active Particles, Volume 2Kinetic Models for Pattern Formation in Animal Aggregations: A Symmetry and Bifurcation Approach
[In this study we start by reviewing a class of 1D hyperbolic/kinetic models (with two velocities) used to investigate the collective behaviour of cells, bacteria or animals. We then focus on a restricted class of nonlocal models that incorporate various inter-individual communication mechanisms, and discuss how the symmetries of these models impact the various types of spatially heterogeneous and spatially homogeneous equilibria exhibited by these nonlocal models. In particular, we characterise a new type of equilibria that was not discussed before for this class of models, namely a relative equilibria. Then we simulate numerically these models and show a variety of spatio-temporal patterns (including classic equilibria and relative equilibria) exhibited by these models. We conclude by introducing a continuation algorithm (which takes into account the models symmetries) that allows us to track the solutions bifurcating from these different equilibria. Finally, we apply this algorithm to identify a D3-symmetric steady-state solution.]
Published: Aug 23, 2019
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.