Active Particles, Volume 2Singular Cucker–Smale Dynamics
Active Particles, Volume 2: Singular Cucker–Smale Dynamics
Minakowski, Piotr; Mucha, Piotr B.; Peszek, Jan; Zatorska, Ewelina
2019-08-23 00:00:00
[This chapter is dedicated to the singular models of flocking. We give an overview of the existing literature starting from microscopic Cucker–Smale (CS) model with singular communication weight, through its mesoscopic mean-field limit, up to the corresponding macroscopic regime. For the microscopic CS model and its selected variants, the collision-avoidance phenomenon is discussed. For the kinetic mean-field model, we sketch the existence of global-in-time measure-valued solutions, paying special attention to weak-atomic uniqueness of solutions. Ultimately, for the macroscopic singular model, we provide a summary of existence results for the Euler-type alignment system. This includes the existence of strong solutions on a one-dimensional torus, and the extension of this result to higher dimensions by restricting the size of the initial data. Additionally, we present the pressureless Navier–Stokes-type system corresponding to particular choice of alignment kernel. This system is then compared—analytically and numerically—to the porous medium equation.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/active-particles-volume-2-singular-cucker-smale-dynamics-uQP5vbTGm3
Active Particles, Volume 2Singular Cucker–Smale Dynamics
[This chapter is dedicated to the singular models of flocking. We give an overview of the existing literature starting from microscopic Cucker–Smale (CS) model with singular communication weight, through its mesoscopic mean-field limit, up to the corresponding macroscopic regime. For the microscopic CS model and its selected variants, the collision-avoidance phenomenon is discussed. For the kinetic mean-field model, we sketch the existence of global-in-time measure-valued solutions, paying special attention to weak-atomic uniqueness of solutions. Ultimately, for the macroscopic singular model, we provide a summary of existence results for the Euler-type alignment system. This includes the existence of strong solutions on a one-dimensional torus, and the extension of this result to higher dimensions by restricting the size of the initial data. Additionally, we present the pressureless Navier–Stokes-type system corresponding to particular choice of alignment kernel. This system is then compared—analytically and numerically—to the porous medium equation.]
Published: Aug 23, 2019
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.