Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Margolus (1984)
Physics-like models of computation☆Physica D: Nonlinear Phenomena, 10
N. Margolus (1998)
Crystalline computation
A. Scott (1982)
Dynamics of Davydov solitonsPhysical Review A, 26
T. Toffoli (2002)
Symbol Super Colliders
M. Jakubowski, K. Steiglitz, R. Squier (2002)
Computing with Solitons: A Review and Prospectus
Matthew Cook (2009)
A Concrete View of Rule 110 Computation
K. Lindgren, M. Nordahl (1990)
Universal Computation in Simple One-Dimensional Cellular AutomataComplex Syst., 4
M. Kudlek, Iurie Rogojin (2001)
Small Universal Circular Post MachinesComput. Sci. J. Moldova, 9
A. Adamatzky, J. Durand-Lose (2002)
Collision-Based Computing
G. Martínez, A. Adamatzky, Harold Mclntosh (2015)
Computing with virtual cellular automata collider2015 Science and Information Conference (SAI)
H. Zenil (2012)
A Computable Universe
S. Golomb, B. Grunbaum, G. Shephard (1990)
Tilings and Patterns
E. Berlekamp, J. Conway, R. Guy (1983)
Winning Ways for Your Mathematical PlaysJournal of Multivariate Analysis
Cheng-da Zhao (2005)
Solitons on conducting polymers
N. Margolus (2008)
Universal Cellular Automata Based on the Collisions of Soft Spheres
A. Davydov (1977)
Solitons and energy transfer along protein molecules.Journal of theoretical biology, 66 2
S. Siccardi, A. Adamatzky (2015)
Actin quantum automata: Communication and computation in molecular networksNano Commun. Networks, 6
E. Gobbetti, R. Scateni (1999)
Encyclopedia of Electrical and Electronics Engineering
(1966)
Theory of Self-reproducing Automata (edited and completed by A
S. Wolfram
One-dimensional Cellular Automata
G. Martínez, H. McIntosh, J. Mora (2006)
Gliders in Rule 110Int. J. Unconv. Comput., 2
G. Martínez, H. McIntosh, J. Mora, S. Vergara (2007)
Determining a Regular Language by Glider-Based Structures called Phases fi -1 in RuleJ. Cell. Autom., 3
G. Martínez, A. Adamatzky, F. Chen, L. Chua (2012)
On Soliton Collisions between Localizations in Complex Elementary Cellular Automata: Rules 54 and 110 and BeyondComplex Syst., 21
T. Toffoli (1998)
Non-Conventional Computers
K. Morita (2007)
Simple Universal One-Dimensional Reversible Cellular AutomataJ. Cell. Autom., 2
(2002)
A concordance for rule 110
G. Martínez, H. McIntosh (2001)
ATLAS: Collisions of gliders as phases of ether in rule 110
Yao Lu, Yuzuru Sato, S. Amari (2011)
Traveling Bumps and Their Collisions in a Two-Dimensional Neural FieldNeural Computation, 23
S. Wolfram, A. Mallinckrodt (1994)
Cellular Automata And Complexity
ProspectusMariusz Jakubowski, Ken SteiglitzComputer (2007)
Computing with Solitons: a Review and Prospectus to Appear in Multiple-valued Logic, Special Issue on Collision-based Computing, Early 2001
V. Cerf (2014)
Unconventional computingCommunications of the ACM, 57
A. Smith (1971)
Simple Computation-Universal Cellular SpacesJ. ACM, 18
A. Wuensche (2011)
Exploring Discrete Dynamics
B. Voorhees (1995)
Computational Analysis of One-Dimensional Cellular Automata
A. Davydov (1979)
Solitons in molecular systems
A. Adamatzky, Richard Mayne (2014)
Actin Automata: Phenomenology and LocalizationsInt. J. Bifurc. Chaos, 25
(1971)
Information and transmission in cellular automata. PhD Dissertation
G. Martínez, H. McIntosh, J. Mora (2011)
Reproducing the Cyclic Tag System Developed by Matthew Cook with Rule 110 Using the Phases fi_1J. Cell. Autom., 6
Linear cellular automata via de Bruijn diagrams
G. Martínez, A. Adamatzky, H. McIntosh (2012)
Computing on rings
G. Martínez, J. Mora, H. Zenil (2013)
Computation and Universality: Class IV versus Class III Cellular AutomataJ. Cell. Autom., 7
J. Mills (2008)
The nature of the Extended Analog ComputerPhysica D: Nonlinear Phenomena, 237
S. Wolfram (2002)
A new kind of science
A. Adamatzky (2001)
Computing in nonlinear media and automata collectives
M. Kudlek, Yurii Rogozhin (2001)
New Small Universal Circular Post Machines
G. Martínez, H. McIntosh, J. Mora, S. Vergara (2007)
Rule 110 Objects and Other Collision-Based ConstructionsJ. Cell. Autom., 2
A. Alhazov, M. Kudlek, Iurie Rogojin (2002)
Nine Universal Circular Post MachinesComput. Sci. J. Moldova, 10
M. Minsky (1967)
Computation: Finite and Infinite Machines
Rule 110 as it relates to the presence of gliders
(2001)
ATLAS: Collisions of gliders like phases of ether in Rule 110, http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/ATLAS/ bookcollisions.html
A. Bandyopadhyay, R. Pati, S. Sahu, F. Peper, D. Fujita (2010)
Massively parallel computing on an organic molecular layerArXiv, abs/1110.5844
Felix Hueber (2016)
Feynman And Computation Exploring The Limits Of Computers
H. Zenil (2012)
A Computable Universe: Understanding and Exploring Nature As Computation
N. Margolus, T. Toffoli, G. Vichniac (1986)
Cellular-automata supercomputers for fluid-dynamics modeling.Physical review letters, 56 16
S. Siccardi, J. Tuszynski, A. Adamatzky (2015)
Boolean gates on actin filamentsArXiv, abs/1506.09044
J. Brédas, G. Street (1985)
Polarons, bipolarons, and solitons in conducting polymersAccounts of Chemical Research, 18
K. Morita (2011)
Simulating reversible Turing machines and cyclic tag systems by one-dimensional reversible cellular automataTheor. Comput. Sci., 412
S. Ninagawa, G. Martínez (2014)
Compression-Based Analysis of Cyclic Tag System Emulated by Rule 110J. Cell. Autom., 9
A. Hey (2002)
Feynman And Computation
E. Fredkin, T. Toffoli (2002)
Design Principles for Achieving High-Performance Submicron Digital Technologies
M. Arbib (1969)
Theories of abstract automata
G. Martínez, A. Adamatzky, C. Stephens, A. Hoeflich (2011)
Cellular automaton supercollidersInternational Journal of Modern Physics C, 22
Turlough Neary, D. Woods (2006)
P-completeness of Cellular Automaton Rule 110
F. Bagnoli (1998)
Cellular Automata
Matthew Cook (2004)
Universality in Elementary Cellular AutomataComplex Syst., 15
[A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.]
Published: Jul 19, 2016
Keywords: Actin Filament; Cellular Automaton; Regular Expression; Finite State Machine; Evolution Space
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.