Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Advances in Unconventional ComputingThe Group Zoo of Classical Reversible Computing and Quantum Computing

Advances in Unconventional Computing: The Group Zoo of Classical Reversible Computing and Quantum... [By systematically inflating the group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} permutation matrices to the group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} unitary matrices, we can see how classical computing is embedded in quantum computing. In this process, an important role is played by two subgroups of the unitary group U(n), i.e. XU(n) and ZU(n). Here, XU(n) consists of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} unitary matrices with all line sums (i.e. the n row sums and the n column sums) equal to 1, whereas ZU(n) consists of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} diagonal unitary matrices with upper-left entry equal to 1. As a consequence, quantum computers can be built from NEGATOR gates and PHASOR gates. The NEGATOR is a 1-qubit circuit that is a natural generalization of the 1-bit NOT gate of classical computing. In contrast, the PHASOR is a 1-qubit circuit not related to classical computing.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Advances in Unconventional ComputingThe Group Zoo of Classical Reversible Computing and Quantum Computing

Part of the Emergence, Complexity and Computation Book Series (volume 22)
Editors: Adamatzky, Andrew

Loading next page...
 
/lp/springer-journals/advances-in-unconventional-computing-the-group-zoo-of-classical-s0xPOY0uoo

References (25)

Publisher
Springer International Publishing
Copyright
© Springer International Publishing Switzerland 2017
ISBN
978-3-319-33923-8
Pages
455 –474
DOI
10.1007/978-3-319-33924-5_18
Publisher site
See Chapter on Publisher Site

Abstract

[By systematically inflating the group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} permutation matrices to the group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} unitary matrices, we can see how classical computing is embedded in quantum computing. In this process, an important role is played by two subgroups of the unitary group U(n), i.e. XU(n) and ZU(n). Here, XU(n) consists of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} unitary matrices with all line sums (i.e. the n row sums and the n column sums) equal to 1, whereas ZU(n) consists of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} diagonal unitary matrices with upper-left entry equal to 1. As a consequence, quantum computers can be built from NEGATOR gates and PHASOR gates. The NEGATOR is a 1-qubit circuit that is a natural generalization of the 1-bit NOT gate of classical computing. In contrast, the PHASOR is a 1-qubit circuit not related to classical computing.]

Published: Jul 19, 2016

There are no references for this article.