Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content

An integrated method for the rapid dewatering and solidification/stabilization of dredged... To more efficiently treat the dredged contaminated sediment (DCS) with a high water content, this study proposes an integrated method (called PHDVPSS) that uses the solidifying/stabilizing (S/S) agents and prefabricated horizontal drain (PHD) assisted by vacuum pressure (VP). Using this method, dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved. A series of model tests was conducted to investigate the effectiveness of the proposed method. Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement (PC) directly without prior dewatering. The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12–17 times higher than that by the conventional S/S method. DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age. The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC, because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn. The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder, which resulted in higher mechanical strength and higher Zn stabilization efficiency.[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Frontiers of Environmental Science & Engineering Springer Journals

An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content

Loading next page...
 
/lp/springer-journals/an-integrated-method-for-the-rapid-dewatering-and-solidification-3sfdy3000x

References (69)

Publisher
Springer Journals
Copyright
Copyright © Higher Education Press 2020
ISSN
2095-2201
eISSN
2095-221X
DOI
10.1007/s11783-020-1359-1
Publisher site
See Article on Publisher Site

Abstract

To more efficiently treat the dredged contaminated sediment (DCS) with a high water content, this study proposes an integrated method (called PHDVPSS) that uses the solidifying/stabilizing (S/S) agents and prefabricated horizontal drain (PHD) assisted by vacuum pressure (VP). Using this method, dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved. A series of model tests was conducted to investigate the effectiveness of the proposed method. Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement (PC) directly without prior dewatering. The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12–17 times higher than that by the conventional S/S method. DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age. The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC, because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn. The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder, which resulted in higher mechanical strength and higher Zn stabilization efficiency.[graphic not available: see fulltext]

Journal

Frontiers of Environmental Science & EngineeringSpringer Journals

Published: Aug 1, 2021

Keywords: Dredged contaminated sediment; Dewatering; Solidification/stabilization; Vacuum preloading; Prefabricated horizontal drain; Heavy metal

There are no references for this article.