Access the full text.
Sign up today, get DeepDyve free for 14 days.
[One approach that has been used to solve the DGP is to represent it as a continuous optimization problem [59]. To understand it, we consider a DGP with K = 2, V = {u, v, s}, E = {{ u, v}, {v, s}}, where the associated quadratic system is (xu1−xv1)2+(xu2−xv2)2=duv2(xv1−xs1)2+(xv2−xs2)2=dvs2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle\begin{array}{rcl} (x_{u1} - x_{v1})^{2} + (x_{ u2} - x_{v2})^{2}& =& d_{ uv}^{2} {}\\ (x_{v1} - x_{s1})^{2} + (x_{ v2} - x_{s2})^{2}& =& d_{ vs}^{2}, {}\\ \end{array}$$ \end{document} which can be rewritten as (xu1−xv1)2+(xu2−xv2)2−duv2=0(xv1−xs1)2+(xv2−xs2)2−dvs2=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle\begin{array}{rcl} (x_{u1} - x_{v1})^{2} + (x_{ u2} - x_{v2})^{2} - d_{ uv}^{2}& =& 0 {}\\ (x_{v1} - x_{s1})^{2} + (x_{ v2} - x_{s2})^{2} - d_{ vs}^{2}& =& 0. {}\\ \end{array}$$ \end{document} Consider the function f:ℝ6→ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f: \mathbb{R}^{6} \rightarrow \mathbb{R}$$ \end{document}, defined by f(xu1,xu2,xv1,xv2,xs1,xs2)=(xu1−xv1)2+(xu2−xv2)2−duv22+(xv1−xs1)2+(xv2−xs2)2−dvs22.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle\begin{array}{rcl} f(x_{u1},x_{u2},x_{v1},x_{v2},x_{s1},x_{s2})& =& \left ((x_{u1} - x_{v1})^{2} + (x_{ u2} - x_{v2})^{2} - d_{ uv}^{2}\right )^{2} {}\\ & +& \left ((x_{v1} - x_{s1})^{2} + (x_{ v2} - x_{s2})^{2} - d_{ vs}^{2}\right )^{2}. {}\\ \end{array}$$ \end{document} It is not hard to realize that the solution x∗∈ℝ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x^{{\ast}}\in \mathbb{R}^{6}$$ \end{document} of the associated DGP can be found by solving the following problem: 3.1minx∈ℝ6f(x).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle{ \min _{x\in \mathbb{R}^{6}}f(x). }$$ \end{document} That is, we wish to find the point x∗∈ℝ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x^{{\ast}}\in \mathbb{R}^{6}$$ \end{document} which attains the smallest value of f.]
Published: Jul 14, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.