Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analysis of Flow Oscillation Due to Sidewall of Three-Dimensional Supersonic Open Cavity Flow

Analysis of Flow Oscillation Due to Sidewall of Three-Dimensional Supersonic Open Cavity Flow Unsteady turbulent flow simulations were performed based on the Reynolds-averaged Navier–Stokes (RANS) equations to investigate flow oscillation due to three-dimensional (3D) configuration of a Mach 1.5 supersonic open cavity flow with a length-to-depth ratio of 3. Two-dimensional (2D) and 3D unsteady simulation results were analyzed and compared with experimental data and Rossiter’s empirical prediction data. The three-dimensional cavity width-to-depth ratio (W/D) was 1, 3.8 and 7.6. Computational results indicated that pressure oscillation in the 2D flow was generated by a single-flow structure, whereas a multiple-flow structure generated multiple oscillation peaks in the 3D flow. The flow structure in the 3D cavity was investigated. For the 2D flow case, the cavity internal pressure wave was directly synchronized with the free shear layer. In the 3D flow case, an unstable spanwise flow due to the sidewall was observed. This spanwise fluctuation produced additional pressure oscillations coupled with the streamwise internal pressure wave. The numerical results indicate that the spanwise flow reduces the propagation speed of the internal pressure waves and the intensity of the corresponding pressure fluctuation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Aeronautical & Space Sciences Springer Journals

Analysis of Flow Oscillation Due to Sidewall of Three-Dimensional Supersonic Open Cavity Flow

Loading next page...
 
/lp/springer-journals/analysis-of-flow-oscillation-due-to-sidewall-of-three-dimensional-yU5n32dmcy

References (25)

Publisher
Springer Journals
Copyright
Copyright © 2019 by The Korean Society for Aeronautical & Space Sciences
Subject
Engineering; Aerospace Technology and Astronautics; Fluid- and Aerodynamics
ISSN
2093-274X
eISSN
2093-2480
DOI
10.1007/s42405-019-00174-5
Publisher site
See Article on Publisher Site

Abstract

Unsteady turbulent flow simulations were performed based on the Reynolds-averaged Navier–Stokes (RANS) equations to investigate flow oscillation due to three-dimensional (3D) configuration of a Mach 1.5 supersonic open cavity flow with a length-to-depth ratio of 3. Two-dimensional (2D) and 3D unsteady simulation results were analyzed and compared with experimental data and Rossiter’s empirical prediction data. The three-dimensional cavity width-to-depth ratio (W/D) was 1, 3.8 and 7.6. Computational results indicated that pressure oscillation in the 2D flow was generated by a single-flow structure, whereas a multiple-flow structure generated multiple oscillation peaks in the 3D flow. The flow structure in the 3D cavity was investigated. For the 2D flow case, the cavity internal pressure wave was directly synchronized with the free shear layer. In the 3D flow case, an unstable spanwise flow due to the sidewall was observed. This spanwise fluctuation produced additional pressure oscillations coupled with the streamwise internal pressure wave. The numerical results indicate that the spanwise flow reduces the propagation speed of the internal pressure waves and the intensity of the corresponding pressure fluctuation.

Journal

International Journal of Aeronautical & Space SciencesSpringer Journals

Published: May 24, 2019

There are no references for this article.