Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Bowker, J. Belnap, D. Davidson, H. Goldstein (2006)
Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual modelJournal of Applied Ecology, 43
Hadi Habiby, M. Afyuni, A. Khoshgoftarmanesh, R. Schulin (2014)
Effect of preceding crops and their residues on availability of zinc in a calcareous Zn-deficient soilBiology and Fertility of Soils, 50
T. Kettler, J. Doran, T. Gilbert (2001)
Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality AnalysesSoil Science Society of America Journal, 65
P. Loveland, J. Webb (2003)
Is there a critical level of organic matter in the agricultural soils of temperate regions: a reviewSoil & Tillage Research, 70
A. Kabata-Pendias (2004)
Soil-plant transfer of trace elements—an environmental issueGeoderma, 122
Matthew Smith, S. Myers (2018)
Impact of anthropogenic CO2 emissions on global human nutritionNature Climate Change, 8
Q. Fu, S. Feng (2014)
Responses of terrestrial aridity to global warmingJournal of Geophysical Research: Atmospheres, 119
R. Ptáčník, G. Jenerette, A. Verschoor, Andrea Huberty, A. Solimini, J. Brookes (2005)
Applications of ecological stoichiometry for sustainable acquisition of ecosystem servicesOikos, 109
D. Schimel (2010)
Drylands in the Earth SystemScience, 327
Takanori Kobayashi, N. Nishizawa (2012)
Iron uptake, translocation, and regulation in higher plants.Annual review of plant biology, 63
M. Delgado‐Baquerizo, F. Maestre, A. Gallardo, M. Bowker, M. Wallenstein, J. Quero, J. Quero, V. Ochoa, Beatriz Gozalo, M. García-Gómez, Santiago Soliveres, Pablo García‐Palacios, M. Berdugo, Enrique Valencia, C. Escolar, Tulio Arredondo, Claudia Barraza-Zepeda, Donaldo Bran, J. Carreira, M. Chaieb, A. Conceição, Mchich Derak, D. Eldridge, A. Escudero, C. Espinosa, J. Gaitán, M. Gatica, S. Gómez‐González, Elizabeth Guzman, J. Gutiérrez, A. Florentino, E. Hepper, R. Hernández, E. Huber-Sannwald, M. Jankju, Jushan Liu, Rebecca Mau, M. Miriti, J. Monerris, K. Naseri, Z. Noumi, V. Polo, A. Prina, E. Pucheta, E. Ramírez, David Ramírez-Collantes, R. Romão, M. Tighe, D. Torres, C. Torres‐Díaz, E. Ungar, J. Val, W. Wamiti, Deli Wang, E. Zaady (2013)
Decoupling of soil nutrient cycles as a function of aridity in global drylandsNature, 502
U. Gupta, Kening Wu, Siyuan Liang (2008)
Micronutrients in Soils, Crops, and LivestockEarth Science Frontiers, 15
W. Lindsay, W. Norvell (1978)
Development of a DTPA soil test for zinc, iron, manganese and copperSoil Science Society of America Journal, 42
Jianping Huang, Haipeng Yu, X. Guan, Guoyin Wang, R. Guo (2016)
Accelerated dryland expansion under climate changeNature Climate Change, 6
J. Sardans, J. Peñuelas (2015)
Potassium: a neglected nutrient in global change.Global Ecology and Biogeography, 24
M. Palmgren, S. Clemens, L. Williams, Ute Krämer, S. Borg, J. Schjørring, D. Sanders (2008)
Zinc biofortification of cereals: problems and solutions.Trends in plant science, 13 9
B. Jansen, K. Nierop, J. Verstraten (2005)
Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol B horizonsEuropean Journal of Soil Science, 56
C. Plaza, C. Zaccone, K. Sawicka, A. Méndez, A. Tarquis, G. Gascó, G. Heuvelink, E. Schuur, F. Maestre (2018)
Soil resources and element stocks in drylands to face global issuesScientific Reports, 8
S. Sauvé, W. Hendershot, H. Allen (2000)
Solid-Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic MatterEnvironmental Science & Technology, 34
G. Jones, B. Droz, P. Greve, P. Gottschalk, Deyan Poffet, S. McGrath, S. Seneviratne, Pete Smith, L. Winkel (2017)
Selenium deficiency risk predicted to increase under future climate changeProceedings of the National Academy of Sciences of the United States of America, 114
T. Garnett, M. Appleby, A. Balmford, I. Bateman, T. Benton, P. Bloomer, B. Burlingame, M. Dawkins, Liam Dolan, D. Fraser, M. Herrero, I. Hoffmann, Pete Smith, P. Thornton, C. Toulmin, S. Vermeulen, H. Godfray (2013)
Sustainable Intensification in Agriculture: Premises and PoliciesScience, 341
Thomas Graham (1991)
Trace element deficiencies in cattle.The Veterinary clinics of North America. Food animal practice, 7 1
Y. Rosseel (2012)
lavaan: An R Package for Structural Equation ModelingJournal of Statistical Software, 48
J. Katyal, B. Sharma (1991)
DTPA-extractable and total Zn, Cu, Mn, and Fe in Indian soils and their association with some soil propertiesGeoderma, 49
J. Reynolds, D. Smith, E. Lambin, B. Turner, M. Mortimore, S. Batterbury, T. Downing, H. Dowlatabadi, R. Fernández, J. Herrick, E. Huber-Sannwald, Hong Jiang, R. Leemans, T. Lynam, F. Maestre, M. Ayarza, B. Walker (2007)
Global Desertification: Building a Science for Dryland DevelopmentScience, 316
B. Thompson, L. Amoroso (2010)
Combating micronutrient deficiencies: food-based approaches.
R. Hassan, R. Scholes, N. Ash (2005)
Ecosystems and human well-being: current state and trends
B. Shipley (2009)
Confirmatory path analysis in a generalized multilevel context.Ecology, 90 2
J. White, R. Zasoski (1999)
Mapping soil micronutrientsField Crops Research, 60
R. Prăvălie (2016)
Drylands extent and environmental issues. A global approachEarth-Science Reviews, 161
H. Pendias, A. Kabata-Pendias (2000)
Trace Elements in Soils and Plants, Third Edition
W. Luo, F. Dijkstra, E. Bai, Jiao Feng, X. Lü, Chao Wang, Honghui Wu, Maihe Li, Xingguo Han, Yong Jiang (2015)
A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern ChinaBiogeochemistry, 127
Z. Yuan, F. Jiao, Xiupeng Shi, J. Sardans, F. Maestre, M. Delgado‐Baquerizo, P. Reich, J. Peñuelas (2017)
Experimental and observational studies find contrasting responses of soil nutrients to climate changeeLife, 6
W. Luo, J. Sardans, F. Dijkstra, J. Peñuelas, X. Lü, Honghui Wu, Maihe Li, E. Bai, Zhengwen Wang, Xingguo Han, Yong Jiang (2016)
Thresholds in decoupled soil-plant elements under changing climatic conditionsPlant and Soil, 409
J. Sims (1986)
Soil pH effects on the distribution and plant availability of manganese, copper, and zincSoil Science Society of America Journal, 50
E. Moreno‐Jiménez, J. Peñalosa, R. Manzano, R. Carpena-Ruiz, R. Gamarra, E. Esteban (2009)
Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.Journal of hazardous materials, 162 2-3
P. Gerland, A. Raftery, H. Ševčíková, Nan Li, Dana Gu, T. Spoorenberg, L. Alkema, B. Fosdick, J. Chunn, N. Lalic, G. Bay, T. Buettner, G. Heilig, J. Wilmoth (2014)
World population stabilization unlikely this centuryScience, 346
H. Marschner, V. Römheld, M. Kissel (1986)
Different strategies in higher plants in mobilization and uptake of ironJournal of Plant Nutrition, 9
N. Kämpf, U. Schwertmann (1983)
Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soilsGeoderma, 29
Jerry Spears (2000)
Micronutrients and immune function in cattleProceedings of the Nutrition Society, 59
M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, P. Nico (2015)
Chapter One - Mineral–Organic Associations: Formation, Properties, and Relevance in Soil EnvironmentsAdvances in Agronomy, 130
M. Broadley, P. Brown, I. Cakmak, Z. Rengel, F. Zhao (2012)
Function of Nutrients: Micronutrients
Ross Welch (1995)
Micronutrient Nutrition of PlantsCritical Reviews in Plant Sciences, 14
E. Slessarev, Yang Lin, N. Bingham, J. Johnson, J. Johnson, Yongjiu Dai, J. Schimel, Oliver Chadwick (2016)
Water balance creates a threshold in soil pH at the global scaleNature, 540
F. Zhao, Y. Su, S. Dunham, M. Rakszegi, Z. Bedo, S. McGrath, P. Shewry (2009)
Variation in mineral micronutrient concentrations in grain of wheat lines of diverse originJournal of Cereal Science, 49
R. Hijmans, S. Cameron, J. Parra, Peter Jones, A. Jarvis (2005)
Very high resolution interpolated climate surfaces for global land areasInternational Journal of Climatology, 25
W. Ulrich, Santiago Soliveres, F. Maestre, N. Gotelli, J. Quero, M. Delgado‐Baquerizo, M. Bowker, D. Eldridge, V. Ochoa, Beatriz Gozalo, Enrique Valencia, M. Berdugo, C. Escolar, M. García-Gómez, A. Escudero, A. Prina, Graciela Alfonso, Tulio Arredondo, Donaldo Bran, Omar Cabrera, Alex Cea, M. Chaieb, Jorge Contreras, Mchich Derak, C. Espinosa, A. Florentino, J. Gaitán, V. Muro, W. Ghiloufi, S. Gómez‐González, J. Gutiérrez, R. Hernández, E. Huber-Sannwald, M. Jankju, Rebecca Mau, F. Hughes, M. Miriti, J. Monerris, M. Muchane, K. Naseri, E. Pucheta, David Ramírez-Collantes, E. Raveh, R. Romão, C. Torres‐Díaz, J. Val, J. Veiga, Deli Wang, Xia Yuan, E. Zaady (2014)
Climate and soil attributes determine plant species turnover in global drylandsJournal of Biogeography, 41
(2012)
It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands
Sun Kim, M. Guerinot (2007)
Mining iron: Iron uptake and transport in plantsFEBS Letters, 581
F. Maestre, D. Eldridge, Santiago Soliveres, S. Kéfi, M. Delgado‐Baquerizo, M. Bowker, Pablo García‐Palacios, J. Gaitán, A. Gallardo, R. Lázaro, M. Berdugo (2016)
Structure and functioning of dryland ecosystems in a changing world.Annual review of ecology, evolution, and systematics, 47
L. Robinson, Polly Ericksen, Sabrina Chesterman, Jeffrey Worden (2015)
Sustainable intensification in drylands: What resilience and vulnerability can tell usAgricultural Systems, 135
H. Bradl (2004)
Adsorption of heavy metal ions on soils and soils constituents.Journal of colloid and interface science, 277 1
RM Welch, L Shuman (1995)
Micronutrient nutrition of plantsCRC. Crit. Rev. Plant Sci., 14
A. Santiago-Martín, F. Oort, C. González, J. Quintana, A. Lafuente, I. Lamy (2015)
Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soilsEnvironmental Toxicology and Chemistry, 34
A. Voegelin, S. Pfister, Andreas Scheinost, M. Marcus, R. Kretzschmar (2005)
Changes in zinc speciation in field soil after contamination with zinc oxide.Environmental science & technology, 39 17
B. Marschner, K. Kalbitz (2003)
Controls of bioavailability and biodegradability of dissolved organic matter in soilsGeoderma, 113
Zhenli He, Xiaoe Yang, P. Stoffella (2005)
Trace elements in agroecosystems and impacts on the environment.Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, 19 2-3
Adria Sherman (1992)
Zinc, copper, and iron nutriture and immunity.The Journal of nutrition, 122 3 Suppl
P. White, M. Broadley (2005)
Biofortifying crops with essential mineral elements.Trends in plant science, 10 12
J. Sardans, Albert Rivas‐Ubach, J. Peñuelas (2012)
The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectivesPerspectives in Plant Ecology Evolution and Systematics, 14
E. Moreno‐Jiménez, R. Sepúlveda, E. Esteban, L. Beesley (2017)
Efficiency of organic and mineral based amendments to reduce metal[loid]mobility and uptake (Lolium perenne) from a pyrite-waste contaminated soilJournal of Geochemical Exploration, 174
F. Madrid, R. López, F. Cabrera (2007)
Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditionsAgriculture, Ecosystems & Environment, 119
M. McBride (1989)
Reactions controlling heavy metal solubility in soils
R. Zomer, A. Trabucco, D. Bossio, L. Verchot (2008)
Climate change mitigation: a spatial analysis of global land suitability for Clean Development Mechanism afforestation and reforestationAgriculture, Ecosystems & Environment, 126
E. Güngör, M. Bekbölet (2010)
Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption.Geoderma, 159
Drylands cover more than 40% of the terrestrial surface, and their global extent and socioecological importance will increase in the future due to the forecasted increases in aridity driven by climate change. Despite the essential role of metallic micronutrients in life chemistry and ecosystem functioning, it is virtually unknown how their bioavailability changes along aridity gradients at the global scale. Here, we analysed soil total and available copper, iron, manganese and zinc in 143 drylands from all continents, except Antarctica, covering a broad range of aridity and soil conditions. We found that total and available micronutrient concentrations in dryland soils were low compared with averages commonly found in soils of natural and agricultural ecosystems globally. Aridity negatively affected the availability of all micronutrients evaluated, mainly indirectly by increasing soil pH and decreasing soil organic matter. Remarkably, the available Fe:Zn ratio decreased exponentially as the aridity increased, pointing to stoichiometric alterations. Our findings suggest that increased aridity conditions due to climate change will limit the availability of essential micronutrients for organisms, particularly iron and zinc, which together with other adverse effects (for example, reduced water availability) may pose serious threats to key ecological processes and services, such as food production, in drylands worldwide.
Nature Sustainability – Springer Journals
Published: Apr 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.