Access the full text.
Sign up today, get DeepDyve free for 14 days.
(2005)
Photobleaching techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, iFRAP, and FLIP
Shoeb Ahmad, Wenxue Tang, Q. Chang, Y. Qu, Jill Hibshman, Yuhua Li, G. Söhl, K. Willecke, Ping-Chung Chen, Xi Lin (2007)
Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafnessProceedings of the National Academy of Sciences, 104
Q. Hu, S. Deshpande, K. Irani, R. Ziegelstein (1999)
[Ca(2+)](i) oscillation frequency regulates agonist-stimulated NF-kappaB transcriptional activity.The Journal of biological chemistry, 274 48
A. Forge, D. Becker, S. Casalotti, Jill Edwards, N. Marziano, G. Nevill (2003)
Gap junctions in the inner ear: Comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammalsJournal of Comparative Neurology, 467
N. Marziano, S. Casalotti, Anne Portelli, D. Becker, A. Forge (2003)
Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30.Human molecular genetics, 12 8
M. Marhl, Stefan Schuster, M. Brumen (1998)
Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations.Biophysical chemistry, 2 3
G. Biddlecome, G. Berstein, E. Ross (1996)
Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation.The Journal of biological chemistry, 271 14
Gulistan Mese, G. Richard, T. White (2007)
Gap junctions: basic structure and function.The Journal of investigative dermatology, 127 11
Hum Mol Genet
Nancy Allbritton, Tobias Meyer (1993)
Localized calcium spikes and propagating calcium waves.Cell calcium, 14 10
R Fettiplace, AJ Ricci (2006)
Vertebrate hair cells, vol. 27
A. Zdebik, P. Wangemann, T. Jentsch (2009)
Potassium ion movement in the inner ear: insights from genetic disease and mouse models.Physiology, 24
Adi Sabag, O. Dagan, K. Avraham (2005)
Connexins in Hearing Loss: A Comprehensive OverviewJournal of Basic and Clinical Physiology and Pharmacology, 16
F Mammano, M Bortolozzi (2010)
Calcium measurement methods, vol. 43
Michael Kelly, Ping Chen (2009)
Development of form and function in the mammalian cochleaCurrent Opinion in Neurobiology, 19
G. Housley, W. Marcotti, D. Navaratnam, E. Yamoah (2008)
Hair Cells–Beyond the TransducerJournal of Membrane Biology, 223
R. Bruzzone, C. Giaume (2010)
Connexin Methods and Protocols
E. Glowatzki, L. Grant, P. Fuchs (2008)
Hair cell afferent synapsesCurrent Opinion in Neurobiology, 18
D. Jagger, A. Forge (2006)
Compartmentalized and Signal-Selective Gap Junctional Coupling in the Hearing CochleaThe Journal of Neuroscience, 26
S. Yum, Junxian Zhang, V. Valiunas, G. Kanaporis, P. Brink, T. White, S. Scherer (2007)
Human connexin26 and connexin30 form functional heteromeric and heterotypic channels.American journal of physiology. Cell physiology, 293 3
J. Ashmore (2008)
Cochlear outer hair cell motility.Physiological reviews, 88 1
M. Cohen-Salmon, B. Regnault, N. Cayet, D. Caille, K. Demuth, J. Hardelin, N. Janel, P. Meda, C. Petit (2007)
Connexin30 deficiency causes instrastrial fluid–blood barrier disruption within the cochlear stria vascularisProceedings of the National Academy of Sciences, 104
J. Lautermann, H. Frank, Klaus Jahnke, O. Traub, E. Winterhager (1999)
Developmental expression patterns of connexin26 and -30 in the rat cochlea.Developmental genetics, 25 4
Takayuki Kudo, S. Kure, K. Ikeda, An-Ping Xia, Y. Katori, Masaaki Suzuki, K. Kojima, A. Ichinohe, Yoichi Suzuki, Y. Aoki, Toshimitsu Kobayashi, Y. Matsubara (2003)
Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness.Human molecular genetics, 12 9
S. Schuster, M. Marhl, T. Höfer (2002)
Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling.European journal of biochemistry, 269 5
S. Schuster, M. Marhl, T. Höfer (2002)
Modelling of simple and complex calcium oscillationsFEBS Journal, 269
Michael Sanderson (2007)
Intercellular calcium waves mediated by inositol trisphosphate.Ciba Foundation symposium, 188
A. Harris (2007)
Connexin channel permeability to cytoplasmic molecules.Progress in biophysics and molecular biology, 94 1-2
S. Lévesque, É. Lavoie, J. Lecka, F. Bigonnesse, J. Sévigny (2007)
Specificity of the ecto‐ATPase inhibitor ARL 67156 on human and mouse ectonucleotidasesBritish Journal of Pharmacology, 152
Q. Hu, S. Deshpande, K. Irani, R. Ziegelstein (1999)
[Ca2+] i Oscillation Frequency Regulates Agonist-stimulated NF-κB Transcriptional Activity*The Journal of Biological Chemistry, 274
P. Kelley, D. Harris, B. Comer, J. Askew, Fowler Tw, Shelley Smith, W. Kimberling (1998)
Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss.American journal of human genetics, 62 4
M. Cohen-Salmon, T. Ott, Vincent Michel, J. Hardelin, Isabelle Perfettini, M. Eybalin, Tao Wu, D. Marcus, P. Wangemann, K. Willecke, C. Petit (2002)
Targeted Ablation of Connexin26 in the Inner Ear Epithelial Gap Junction Network Causes Hearing Impairment and Cell DeathCurrent Biology, 12
U. Kummer, L. Olsen, C. Dixon, A. Green, E. Bornberg-Bauer, G. Baier (2000)
Switching from simple to complex oscillations in calcium signaling.Biophysical journal, 79 3
R. Bruzzone, V. Veronesi, Danielle Gomès, M. Bicego, N. Duval, S. Marlin, C. Petit, P. D'andrea, T. White (2003)
Loss‐of‐function and residual channel activity of connexin26 mutations associated with non‐syndromic deafnessFEBS Letters, 533
P. Wangemann (2006)
Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potentialThe Journal of Physiology, 576
Nicolas Tritsch, D. Bergles (2010)
Developmental Regulation of Spontaneous Activity in the Mammalian CochleaThe Journal of Neuroscience, 30
T. Kikuchi, Joe Adams, Yuka Miyabe, Eigo So, Toshimitsu Kobayashi (2000)
Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafnessMedical Electron Microscopy, 33
Martina Knirsch, Niels Brandt, Claudia Braig, Stephanie Kuhn, B. Hirt, S. Münkner, M. Knipper, J. Engel (2007)
Persistence of Cav1.3 Ca2+ Channels in Mature Outer Hair Cells Supports Outer Hair Cell Afferent SignalingThe Journal of Neuroscience, 27
Victor Hernandez, M. Bortolozzi, V. Pertegato, M. Beltramello, M. Giarin, M. Zaccolo, S. Pantano, F. Mammano (2007)
Unitary permeability of gap junction channels to second messengers measured by FRET microscopyNature Methods, 4
M. Bennett, J. Contreras, F. Bukauskas, J. Sáez (2003)
New roles for astrocytes: Gap junction hemichannels have something to communicateTrends in Neurosciences, 26
R. Dolmetsch, R. Lewis, C. Goodnow, J. Healy (1997)
Differential activation of transcription factors induced by Ca2+ response amplitude and durationNature, 386
D. Mikaelian, B. Alford, Robert Ruben (1965)
XIII Cochlear Potentials and VIII Nerve Action Potentials in Normal and Genetically Deaf MiceAnnals of Otology, Rhinology & Laryngology, 74
D Mikaelian, BR Alford, RJ Ruben (1965)
Cochlear potentials and 8 nerve action potentials in normal and genetically deaf miceAnn Otol Rhinol Laryngol, 74
R. Fettiplace, A. Ricci (2006)
Mechanoelectrical Transduction in Auditory Hair Cells
C. Gallagher, M. Salter (2003)
Differential Properties of Astrocyte Calcium Waves Mediated by P2Y1 and P2Y2 ReceptorsThe Journal of Neuroscience, 23
I. Castillo, M. Villamar, M. Moreno-Pelayo, F. Castillo, Araceli Álvarez, D. Tellería, I. Menéndez, F. Moreno (2002)
A deletion involving the connexin 30 gene in nonsyndromic hearing impairment.The New England journal of medicine, 346 4
An-Ping Xia, Y. Katori, T. Oshima, Kojiro Watanabe, T. Kikuchi, K. Ikeda (2001)
Expression of connexin 30 in the developing mouse cochleaBrain Research, 898
R. Dolmetsch, Keli Xu, R. Lewis (1998)
Calcium oscillations increase the efficiency and specificity of gene expressionNature, 392
Biochem Biophys Res Commun
F. Anselmi, Victor Hernandez, G. Crispino, A. Seydel, S. Ortolano, S. Roper, N. Kessaris, W. Richardson, Gesa Rickheit, M. Filippov, H. Monyer, F. Mammano (2008)
ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner earProceedings of the National Academy of Sciences, 105
J. Gale, V. Piazza, C. Ciubotaru, F. Mammano (2004)
A Mechanism for Sensing Noise Damage in the Inner EarCurrent Biology, 14
H. Hibino, Y. Kurachi (2006)
Molecular and physiological bases of the K+ circulation in the mammalian inner ear.Physiology, 21
Hong-Bo Zhao, N. Yu (2006)
Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigsJournal of Comparative Neurology, 499
A. Goldbeter, G. Dupont, M. Berridge (1990)
Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation.Proceedings of the National Academy of Sciences of the United States of America, 87
Hong-Bo Zhao, T. Kikuchi, A. Ngezahayo, T. White (2006)
Gap Junctions and Cochlear HomeostasisThe Journal of Membrane Biology, 209
J. Molnár, L. Lorand (1961)
Studies on apyrases.Archives of biochemistry and biophysics, 93
L. Lagostena, F. Mammano (2001)
Intracellular calcium dynamics and membrane conductance changes evoked by Deiters' cell purinoceptor activation in the organ of Corti.Cell calcium, 29 3
M. Cohen-Salmon, F. Castillo, C. Petit (2005)
Connexins Responsible for Hereditary Deafness — The Tale Unfolds
Z. Tu, D. Kiang (1998)
Mapping and characterization of the basal promoter of the human connexin26 gene.Biochimica et biophysica acta, 1443 1-2
M. Komoszyński (1996)
Comparative studies on animal and plant apyrases (ATP diphosphohydrolase EC 3.6.1.5) with application of immunological techniques and various ATPase inhibitors.Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 113 3
J. Contreras, J. Sáez, F. Bukauskas, M. Bennett (2003)
Gating and regulation of connexin 43 (Cx43) hemichannelsProceedings of the National Academy of Sciences of the United States of America, 100
L. Lagostena, J. Ashmore, B. Kachar, F. Mammano (2001)
Purinergic control of intercellular communication between Hensen's cells of the guinea‐pig cochleaThe Journal of Physiology, 531
M. Beurg, R. Fettiplace, Jong-Hoon Nam, A. Ricci (2009)
Localization of inner hair cell mechanotransducer channels using high-speed calcium imagingNature Neuroscience, 12
M. Berridge (1995)
Inositol Trisphosphate and Calcium SignalingAnnals of the New York Academy of Sciences, 766
E. Winterhager (2005)
Gap Junctions in Development and Disease
P. Dallos (1978)
Chapter 4 – BIOPHYSICS OF THE COCHLEA*
E. Wilch, H. Azaiez, RA Fisher, J. Elfenbein, A. Murgia, R. Birkenhäger, H. Bolz, SM Silva‐Costa, I. Castillo, T. Haaf, L. Hoefsloot, H. Kremer, C. Kubisch, C. Marechal, A. Pandya, EL Sartorato, E. Schneider, G. Camp, W. Wuyts, Rjh Smith, KH Friderici (2010)
A novel DFNB1 deletion allele supports the existence of a distant cis‐regulatory region that controls GJB2 and GJB6 expressionClinical Genetics, 78
D. Goodenough, D. Paul (2003)
Beyond the gap: functions of unpaired connexon channelsNature Reviews Molecular Cell Biology, 4
V. Verselis, M. Trelles, C. Rubinos, T. Bargiello, M. Srinivas (2009)
Loop Gating of Connexin Hemichannels Involves Movement of Pore-lining Residues in the First Extracellular Loop Domain*Journal of Biological Chemistry, 284
Prof. Krstić (1991)
Human Microscopic Anatomy
J. Sneyd, A. Charles, M. Sanderson (1994)
A model for the propagation of intercellular calcium waves.The American journal of physiology, 266 1 Pt 1
J. Lautermann, W. Cate, P. Altenhoff, R. Grümmer, O. Traub, H. Frank, K. Jahnke, E. Winterhager (1998)
Expression of the gap-junction connexins 26 and 30 in the rat cochleaCell and Tissue Research, 294
M. Beltramello, V. Piazza, F. Bukauskas, T. Pozzan, F. Mammano (2005)
Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafnessNature Cell Biology, 7
R. Eatock, K. Hurley (2003)
Functional development of hair cells.Current topics in developmental biology, 57
B. Teubner, Vincent Michel, Jörg Pesch, J. Lautermann, M. Cohen-Salmon, G. Söhl, K. Jahnke, E. Winterhager, C. Herberhold, J. Hardelin, C. Petit, K. Willecke (2003)
Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential.Human molecular genetics, 12 1
Scott Boitano, E. Dirksen, Michael Sanderson (1992)
Intercellular propagation of calcium waves mediated by inositol trisphosphate.Science, 258 5080
M. Lahne, J. Gale (2008)
Damage-Induced Activation of ERK1/2 in Cochlear Supporting Cells Is a Hair Cell Death-Promoting Signal That Depends on Extracellular ATP and CalciumThe Journal of Neuroscience, 28
J. Goutman, E. Glowatzki (2007)
Time course and calcium dependence of transmitter release at a single ribbon synapseProceedings of the National Academy of Sciences, 104
F. Castillo, M. Rodríguez‐Ballesteros, Araceli Álvarez, T. Hutchin, E. Leonardi, C. Oliveira, H. Azaiez, Z. Brownstein, Matthew Avenarius, S. Marlin, A. Pandya, Hashem Shahin, K. Siemering, D. Weil, W. Wuyts, Luis Aguirre, Y. Martín, M. Moreno-Pelayo, M. Villamar, K. Avraham, H. Dahl, M. Kanaan, W. Nance, C. Petit, Richard Smith, G. Camp, E. Sartorato, A. Murgia, F. Moreno, I. Castillo (2005)
A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairmentJournal of Medical Genetics, 42
M. Levin (2007)
Gap junctional communication in morphogenesis.Progress in biophysics and molecular biology, 94 1-2
H. Hennemann, G. Kozjek, E. Dahl, Bruce Nicholson, Klaus Willecke (1992)
Molecular cloning of mouse connexins26 and -32: similar genomic organization but distinct promoter sequences of two gap junction genes.European journal of cell biology, 58 1
M. Wade, J. Trosko, M. Schindler (1986)
A fluorescence photobleaching assay of gap junction-mediated communication between human cells.Science, 232 4749
S. Rhee (2001)
Regulation of phosphoinositide-specific phospholipase C.Annual review of biochemistry, 70
Deliang Huang, Ping Chen, Shanping Chen, M. Nagura, David Lim, Xi Lin (2002)
Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochleaHearing Research, 165
D. Nelson, Adaoha Ihekwaba, M. Elliott, J. Johnson, C. Gibney, B. Foreman, G. Nelson, V. Sée, C. Horton, D. Spiller, S. Edwards, H. McDowell, J. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D. Kell, M. White (2004)
Oscillations in NF-kappaB signaling control the dynamics of gene expression.Science, 306 5696
F. Mammano, F. Anselmi (2010)
Inner ear connexins, intercellular signalling and deafnessAudiological Medicine, 8
Heiner Niessen, H. Harz, Peter Bedner, Karsten Krämer, K. Willecke (2000)
Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate.Journal of cell science, 113 ( Pt 8)
P. Persson (2012)
Purinergic signallingActa Physiologica, 204
F. Mammano, M. Bortolozzi, S. Ortolano, F. Anselmi (2007)
Ca2+ signaling in the inner ear.Physiology, 22
S. Ortolano, G. Pasquale, G. Crispino, F. Anselmi, F. Mammano, J. Chiorini (2008)
Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner earProceedings of the National Academy of Sciences, 105
T. Boettger, C. Hübner, H. Maier, M. Rust, F. Beck, T. Jentsch (2002)
Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4Nature, 416
T. Kikuchi, R. Kimura, D. Paul, Joe Adams (1995)
Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysisAnatomy and Embryology, 191
B. Mellström, M. Savignac, R. Gómez-Villafuertes, J. Naranjo (2008)
Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models.Physiological reviews, 88 2
R. Hinojosa (1977)
A note on development of Corti's organ.Acta oto-laryngologica, 84 3-4
S. Bosher, R. Warren (1978)
Very low calcium content of cochlear endolymph, an extracellular fluidNature, 273
P. Dallos (2008)
Cochlear amplification, outer hair cells and prestinCurrent Opinion in Neurobiology, 18
D. Muñoz, I. Kendrick, M. Rassam, P. Thorne (2001)
Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia.Acta oto-laryngologica, 121 1
R. Nobili, F. Mammano (1996)
Biophysics of the cochlea. II: Stationary nonlinear phenomenology.The Journal of the Acoustical Society of America, 99 4 Pt 1
A. Harris (2001)
Emerging issues of connexin channels: biophysics fills the gapQuarterly Reviews of Biophysics, 34
S. Maeda, So Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, T. Tsukihara (2009)
Structure of the connexin 26 gap junction channel at 3.5 Å resolutionNature, 458
G. Housley, D. Jagger, D. Greenwood, N. Raybould, S. Salih, L. Järlebark, S. Vlajkovic, R. Kanjhan, P. Nikolic, D. Muñoz, P. Thorne (2002)
Purinergic Regulation of Sound Transduction and Auditory NeurotransmissionAudiology and Neurotology, 7
Z. Mann, M. Duchen, J. Gale (2009)
Mitochondria modulate the spatio-temporal properties of intra- and intercellular Ca2+ signals in cochlear supporting cells.Cell calcium, 46 2
M. Sadanaga, T. Morimitsu (1995)
Development of endocochlear potential and its negative component in mouse cochleaHearing Research, 89
S. Bastianello, C. Ciubotaru, M. Beltramello, F. Mammano (2004)
Dissecting key components of the Ca2+ homeostasis game by multifunctional fluorescence imaging, 5324
F. Mammano, R. Nobili (1993)
Biophysics of the cochlea: linear approximation.The Journal of the Acoustical Society of America, 93 6
C. Clair, L. Combettes, F. Pierre, P. Sansonetti, G. Nhieu (2008)
Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells.Experimental cell research, 314 6
A. Meyer, Thomas Frank, D. Khimich, G. Hoch, D. Riedel, N. Chapochnikov, Y. Yarin, B. Harke, S. Hell, A. Egner, T. Moser (2009)
Tuning of synapse number, structure and function in the cochleaNature Neuroscience, 12
Yongmei Zhao, Mark Rivieccio, S. Lutz, E. Scemes, C. Brosnan (2006)
The TLR3 ligand polyI:C downregulates connexin 43 expression and function in astrocytes by a mechanism involving the NF‐κB and PI3 kinase pathwaysGlia, 54
S. Vlajkovic, G. Housley, D. Muñoz, S. Robson, J. Sévigny, C.J.H Wang, P. Thorne (2004)
Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochleaNeuroscience, 126
K. Prank, F. Gabbiani, G. Brabant (2000)
Coding efficiency and information rates in transmembrane signaling.Bio Systems, 55 1-3
C. Schöfl, G. Brabant, R. Hesch, A. Mühlen, P. Cobbold, K. Cuthbertson (1993)
Temporal patterns of alpha 1-receptor stimulation regulate amplitude and frequency of calcium transients.The American journal of physiology, 265 4 Pt 1
M. Berridge (1993)
Inositol trisphosphate and calcium signallingNature, 361
V. Verselis, M. Srinivas (2008)
Divalent Cations Regulate Connexin Hemichannels by Modulating Intrinsic Voltage-dependent GatingThe Journal of General Physiology, 132
Yu Sun, Wenxue Tang, Q. Chang, Yunfeng Wang, W. Kong, Xi Lin (2009)
Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochleaJournal of Comparative Neurology, 516
F. Virgilio, T. Steinberg, S. Silverstein (1989)
Organic-anion transport inhibitors to facilitate measurement of cytosolic free Ca2+ with fura-2.Methods in cell biology, 31
Shoab Ahmad, Shanping Chen, Jianjun Sun, Xi Lin (2003)
Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice.Biochemical and biophysical research communications, 307 2
I. Castillo, M. Moreno-Pelayo, F. Castillo, Z. Brownstein, S. Marlin, Quint Adina, D. Cockburn, A. Pandya, K. Siemering, G. Chamberlin, E. Ballana, W. Wuyts, Andréa Maciel-Guerra, Araceli Álvarez, M. Villamar, M. Shohat, M. Shohat, D. Abeliovich, H. Dahl, H. Dahl, X. Estivill, P. Gasparini, T. Hutchin, W. Nance, E. Sartorato, Richard Smith, G. Camp, K. Avraham, C. Petit, F. Moreno (2003)
Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study.American journal of human genetics, 73 6
Hong-Bo Zhao, N. Yu, Carrie Fleming (2005)
Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear.Proceedings of the National Academy of Sciences of the United States of America, 102 51
F. Mammano, M. Bortolozzi (2010)
Ca 2+ Imaging: Principles of Analysis and Enhancement
Regina Nickel, A. Forge (2008)
Gap junctions and connexins in the inner ear: their roles in homeostasis and deafnessCurrent Opinion in Otolaryngology & Head and Neck Surgery, 16
Jeong-Rae Kim, Dongkwan Shin, S. Jung, P. Heslop-Harrison, Kwang-Hyun Cho (2010)
A design principle underlying the synchronization of oscillations in cellular systemsJournal of Cell Science, 123
P. Gillespie, U. Müller (2009)
Mechanotransduction by Hair Cells: Models, Molecules, and MechanismsCell, 139
J. Hepler, G. Biddlecome, C. Kleuss, L. Camp, S. Hofmann, E. Ross, A. Gilman (1996)
Functional Importance of the Amino Terminus of G(*)The Journal of Biological Chemistry, 271
A. Goldbeter (2002)
Computational approaches to cellular rhythmsNature, 420
C. Río, P. Dikkes, M. Liberman, G. Corfas (2002)
Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult miceJournal of Comparative Neurology, 442
F. Mammano, G. Frolenkov, L. Lagostena, I. Belyantseva, Maurício Kurc, V. Dodane, A. Colavita, B. Kachar (1999)
ATP-Induced Ca2+ Release in Cochlear Outer Hair Cells: Localization of an Inositol Triphosphate-Gated Ca2+ Store to the Base of the Sensory Hair BundleThe Journal of Neuroscience, 19
R. Rozental, M. Srinivas, D. Spray (2001)
How to close a gap junction channel. Efficacies and potencies of uncoupling agents.Methods in molecular biology, 154
E. Wilch, Mei Zhu, Kirk Burkhart, M. Regier, J. Elfenbein, R. Fisher, K. Friderici (2006)
Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele.American journal of human genetics, 79 1
Yuanhua Tang, H. Othmer (1995)
Frequency encoding in excitable systems with applications to calcium oscillations.Proceedings of the National Academy of Sciences of the United States of America, 92 17
V. Piazza, C. Ciubotaru, J. Gale, F. Mammano (2007)
Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti.Cell calcium, 41 1
Geneviève Dupont, A. Goldbeter (1998)
CaM kinase II as frequency decoder of Ca2+ oscillations.BioEssays : news and reviews in molecular, cellular and developmental biology, 20 8
M. Berridge (1997)
Elementary and global aspects of calcium signalling.The Journal of Physiology, 499
D. Nelson, Adaoha Ihekwaba, M. Elliott, James Johnson, C. Gibney, B. Foreman, G. Nelson, V. Sée, C. Horton, D. Spiller, S. Edwards, H. McDowell, J. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D. Kell, M. White (2004)
Oscillations in NF-κB Signaling Control the Dynamics of Gene ExpressionScience, 306
G Rabut, J Ellenberg (2005)
Live cell imaging
Nicolas Tritsch, Eunyoung Yi, J. Gale, E. Glowatzki, D. Bergles (2007)
The origin of spontaneous activity in the developing auditory systemNature, 450
Connexin 26 (Cx26) and connexin 30 (Cx30) form hemichannels that release ATP from the endolymphatic surface of cochlear supporting and epithelial cells and also form gap junction (GJ) channels that allow the concomitant intercellular diffusion of Ca2+ mobilizing second messengers. Released ATP in turn activates G-protein coupled P2Y2 and P2Y4 receptors, PLC-dependent generation of IP3, release of Ca2+ from intracellular stores, instigating the regenerative propagation of intercellular Ca2+ signals (ICS). The range of ICS propagation is sensitive to the concentration of extracellular divalent cations and activity of ectonucleotidases. Here, the expression patterns of Cx26 and Cx30 were characterized in postnatal cochlear tissues obtained from mice aged between P5 and P6. The expression gradient along the longitudinal axis of the cochlea, decreasing from the basal to the apical cochlear turn (CT), was more pronounced in outer sulcus (OS) cells than in inner sulcus (IS) cells. GJ-mediated dye coupling was maximal in OS cells of the basal CT, inhibited by the nonselective connexin channel blocker carbenoxolone (CBX) and absent in hair cells. Photostimulating OS cells with caged inositol (3,4,5) tri-phosphate (IP3) resulted in transfer of ICS in the lateral direction, from OS cells to IS cells across the hair cell region (HCR) of medial and basal CTs. ICS transfer in the opposite (medial) direction, from IS cells photostimulated with caged IP3 to OS cells, occurred mostly in the basal CT. In addition, OS cells displayed impressive rhythmic activity with oscillations of cytosolic free Ca2+ concentration ([Ca2+]i) coordinated by the propagation of Ca2+ wavefronts sweeping repeatedly through the same tissue area along the coiling axis of the cochlea. Oscillations evoked by uncaging IP3 or by applying ATP differed greatly, by as much as one order of magnitude, in frequency and waveform rise time. ICS evoked by direct application of ATP propagated along convoluted cellular paths in the OS, which often branched and changed dynamically over time. Potential implications of these findings are discussed in the context of developmental regulation and cochlear pathophysiology.
Purinergic Signalling – Springer Journals
Published: Jun 17, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.