Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The first part (Sects. 4.2, 4.3, 4.5 and 4.6) of the present chapter contains several approaches to the investigation of the Fourier spectrum of almost periodic solutions to various differential equations. The core element here is the Cartwright theorem [6] that links the topological dimension of the orbit closure of an almost periodic flow and the algebraic dimension of its frequency module (Theorem 4.8). The next step is an extension of this theorem to non-autonomous differential equations (Theorem 4.11) originally presented in [7]. Applications of Cartwright’s theorems are given for almost periodic ODEs based on the approach due to R. A. Smith (Theorem 4.12) and for DDEs based on results of Mallet-Paret from [16] (Theorem 4.14). In Sect. 4.7 we develop a method for studying fractal dimensions of forced almost periodic oscillations using some kind of recurrence properties. This approach differs from the one due to Douady and Oesterlé and highly relies on almost periodicity. Some fundamental ideas firstly appeared in the works of Naito (see [17, 18]) and then were developed in [1, 2]. In Sect. 4.8 we study forced almost periodic oscillations in Chua’s circuit and compare the analytical upper estimates of the fractal dimension of their trajectory closures with numerical simulations given by the standard box-counting algorithm.]
Published: Jul 2, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.