Access the full text.
Sign up today, get DeepDyve free for 14 days.
—This study proposes a method for detecting bank fraud based on graph neural networks. Financial transactions are represented in the form of a graph and analyzed with a graph neural network with the goal of detecting transactions typical of fraud schemes. The results of experimental tests indicate the high potential of the proposed approach.
Automatic Control and Computer Sciences – Springer Journals
Published: Dec 1, 2022
Keywords: graph neural networks; bank fraud; anomaly detection; convolutional neural networks; information security; financial data analysis
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.