Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Basic Co-Occurrence Latent Semantic Vector Space Model

Basic Co-Occurrence Latent Semantic Vector Space Model The vector representation is one of the important parts in document clustering or classification, which can quantify the text. In this paper, a novel Cooccurrence Latent Semantic Vector Space Model (CLSVSM) is presented and the co-occurrence distribution is further studied. This model is developed based on the Vector Space Model (VSM), embedding the co-occurrence latent semantic of the documents’ keywords to represent their vectors. First, experiments were conducted to test the model performance, using documents from Chinese National Knowledge Infrastructure (CNKI). The results showed the Entropy (E), Purity (P) and F1 value of CLMSVM is 20% better than in VSM in the documents clustering testing, which reveals that CLSVSM can improve the accuracy of clustering of documents, meanwhile reducing sparse degree of vectors. Second, it is the best to estimate the latent semantic: maximum (MAX), minimum (MIN), average (AVE), and median (MED)? More experiments are performed to compare the four estimators. The results indicate that Max and AVE are preferred method, while MIN method is the worst, which coincided with the discussion. Some essential questions were discussed at the end. These questions related to the trends of co-occurrence frequency, the function of co-occurrence intensity and its distribution, which reinforced the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Classification Springer Journals

Basic Co-Occurrence Latent Semantic Vector Space Model

Journal of Classification , Volume 36 (2) – Nov 16, 2018

Loading next page...
 
/lp/springer-journals/basic-co-occurrence-latent-semantic-vector-space-model-Y1ebXSNDjI

References (35)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Classification Society of North America
Subject
Statistics; Statistical Theory and Methods; Pattern Recognition; Bioinformatics; Signal,Image and Speech Processing; Psychometrics; Marketing
ISSN
0176-4268
eISSN
1432-1343
DOI
10.1007/s00357-018-9283-9
Publisher site
See Article on Publisher Site

Abstract

The vector representation is one of the important parts in document clustering or classification, which can quantify the text. In this paper, a novel Cooccurrence Latent Semantic Vector Space Model (CLSVSM) is presented and the co-occurrence distribution is further studied. This model is developed based on the Vector Space Model (VSM), embedding the co-occurrence latent semantic of the documents’ keywords to represent their vectors. First, experiments were conducted to test the model performance, using documents from Chinese National Knowledge Infrastructure (CNKI). The results showed the Entropy (E), Purity (P) and F1 value of CLMSVM is 20% better than in VSM in the documents clustering testing, which reveals that CLSVSM can improve the accuracy of clustering of documents, meanwhile reducing sparse degree of vectors. Second, it is the best to estimate the latent semantic: maximum (MAX), minimum (MIN), average (AVE), and median (MED)? More experiments are performed to compare the four estimators. The results indicate that Max and AVE are preferred method, while MIN method is the worst, which coincided with the discussion. Some essential questions were discussed at the end. These questions related to the trends of co-occurrence frequency, the function of co-occurrence intensity and its distribution, which reinforced the model.

Journal

Journal of ClassificationSpringer Journals

Published: Nov 16, 2018

There are no references for this article.