Bioinformatics and Computational Biology Solutions Using R and BioconductorCell-Based Assays
Bioinformatics and Computational Biology Solutions Using R and Bioconductor: Cell-Based Assays
Huber, W.; Hahne, F.
2005-01-01 00:00:00
[This chapter describes methods and tools for processing and visualizing data from high-throughput cell-based assays. Such assays are used to examine the contribution of genes to a biological process or phenotype (Carpenter and Sabatini, 2004). In principle, this can be done for any gene or combination of genes and for any biological process of interest. There is a variety of technologies, but all of them rely on the availability of genomic resources such as whole genome sequences, full-length cDNA libraries, siRNA collections; or on libraries of protein-specific ligands (compounds). Typically, all or at least large parts of the experimental procedures and data collection are automated. Cell-based assays offer the potential for clustering of genes based on their functional profiles (Piano et al., 2002) and epistatic analyses to elucidate complex genetic networks (Tong et al., 2004).]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/bioinformatics-and-computational-biology-solutions-using-r-and-8BVQC65v0Q
Bioinformatics and Computational Biology Solutions Using R and BioconductorCell-Based Assays
[This chapter describes methods and tools for processing and visualizing data from high-throughput cell-based assays. Such assays are used to examine the contribution of genes to a biological process or phenotype (Carpenter and Sabatini, 2004). In principle, this can be done for any gene or combination of genes and for any biological process of interest. There is a variety of technologies, but all of them rely on the availability of genomic resources such as whole genome sequences, full-length cDNA libraries, siRNA collections; or on libraries of protein-specific ligands (compounds). Typically, all or at least large parts of the experimental procedures and data collection are automated. Cell-based assays offer the potential for clustering of genes based on their functional profiles (Piano et al., 2002) and epistatic analyses to elucidate complex genetic networks (Tong et al., 2004).]
Published: Jan 1, 2005
Keywords: Bivariate Normal Distribution; Epistatic Analysis; Rectangular Table; Complex Genetic Network; General Purpose Tool
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.