Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity

Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and... Biosynthesis of silver nanoparticles was achieved using bark extract of Butea monosperma (Lam.) Taub., a native plant of Indian subcontinent and southeast Asia. The plant parts are familiar for ailment of different diseases. The bioactive compounds present in bark of the plant were extracted with Soxhlet extractor. Silver nitrate (AgNO3) was used as a raw material for preparation of silver nanoparticles (AgNPs). The ratio of bark extract and silver nitrate solution for synthesis of AgNPs was standardized as 3:5. The change in colour of the solution from pale yellow to deep brown can be correlated to reduction reaction catalyzed by plant bioactive compounds. The formation of AgNPs was confirmed by UV–Vis spectrophotometer. The surface plasmon resonance (SPR) maxima, λmax, were recorded at 452 nm. SPR indicates the nature and type of particles present in the solution. The suitable concentration of AgNO3 was found to be 10 mM to carry out reduction reaction with the bark extract. Alkaline environment (pH 9) suitably promotes the reaction. FTIR graph of synthesized AgNPs shows the shifting peak of 3265.0 wavelength/cm and 1635.40 wavelength/cm indicates that AgNPs were coated with plant biomolecules, which is attributed to the stabilization of AgNPs. XRD and SEM photograph of the AgNPs showed that they were spherical in shape and capped with bioactive compounds. Thus, the synthesized AgNPs are more stable, less toxic and homogenous in shape. The average diameter of the nanoparticles was 81 nm. The synthesized AgNPs had efficacy against a Gram-negative bacteria (Escherichia coli), a Gram-positive bacteria (Staphylococcus aureus), and a mold (Aspergillus niger). The maximum conversion was 66%. From the present investigation, it can be concluded that the bioactive compounds present in the bark of Butea have the capacity to reduce silver ion into silver nanoparticles in aqueous condition and the synthesized AgNPs are stabilized and loss toxic. Moreover, they also possess antimicrobial properties against human pathogens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Nanoscience Springer Journals

Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity

Applied Nanoscience , Volume 8 (5) – Mar 23, 2018

Loading next page...
 
/lp/springer-journals/biosynthesis-of-silver-nanoparticles-using-bark-extracts-of-butea-RVoPvXWmu0

References (37)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Materials Science; Nanotechnology; Membrane Biology; Nanotechnology and Microengineering; Nanochemistry
ISSN
2190-5509
eISSN
2190-5517
DOI
10.1007/s13204-018-0721-0
Publisher site
See Article on Publisher Site

Abstract

Biosynthesis of silver nanoparticles was achieved using bark extract of Butea monosperma (Lam.) Taub., a native plant of Indian subcontinent and southeast Asia. The plant parts are familiar for ailment of different diseases. The bioactive compounds present in bark of the plant were extracted with Soxhlet extractor. Silver nitrate (AgNO3) was used as a raw material for preparation of silver nanoparticles (AgNPs). The ratio of bark extract and silver nitrate solution for synthesis of AgNPs was standardized as 3:5. The change in colour of the solution from pale yellow to deep brown can be correlated to reduction reaction catalyzed by plant bioactive compounds. The formation of AgNPs was confirmed by UV–Vis spectrophotometer. The surface plasmon resonance (SPR) maxima, λmax, were recorded at 452 nm. SPR indicates the nature and type of particles present in the solution. The suitable concentration of AgNO3 was found to be 10 mM to carry out reduction reaction with the bark extract. Alkaline environment (pH 9) suitably promotes the reaction. FTIR graph of synthesized AgNPs shows the shifting peak of 3265.0 wavelength/cm and 1635.40 wavelength/cm indicates that AgNPs were coated with plant biomolecules, which is attributed to the stabilization of AgNPs. XRD and SEM photograph of the AgNPs showed that they were spherical in shape and capped with bioactive compounds. Thus, the synthesized AgNPs are more stable, less toxic and homogenous in shape. The average diameter of the nanoparticles was 81 nm. The synthesized AgNPs had efficacy against a Gram-negative bacteria (Escherichia coli), a Gram-positive bacteria (Staphylococcus aureus), and a mold (Aspergillus niger). The maximum conversion was 66%. From the present investigation, it can be concluded that the bioactive compounds present in the bark of Butea have the capacity to reduce silver ion into silver nanoparticles in aqueous condition and the synthesized AgNPs are stabilized and loss toxic. Moreover, they also possess antimicrobial properties against human pathogens.

Journal

Applied NanoscienceSpringer Journals

Published: Mar 23, 2018

There are no references for this article.