Access the full text.
Sign up today, get DeepDyve free for 14 days.
Zeshui Xu (2006)
Induced uncertain linguistic OWA operators applied to group decision makingInf. Fusion, 7
C. Hwang, K. Yoon (1981)
Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey, 186
Wen-Ran Zhang, Jane Zhang, Yong Shi, Su-shing Chen (2009)
BIPOLAR LINEAR ALGEBRA AND YINYANG-N-ELEMENT CELLULAR NETWORKS FOR EQUILIBRIUM-BASED BIOSYSTEM SIMULATION AND REGULATIONJournal of Biological Systems, 17
D. Olson (2005)
Introduction to Business Data Mining
Shi-Jay Chen, Shyi-Ming Chen (2003)
A NEW METHOD FOR HANDLING MULTICRITERIA FUZZY DECISION-MAKING PROBLEMS USING FN-IOWA OPERATORSCybernetics and Systems, 34
Zeshui Xu (2007)
Intuitionistic Fuzzy Aggregation OperatorsIEEE Transactions on Fuzzy Systems, 15
F. Chiclana, E. Herrera-Viedma, F. Herrera, S. Alonso (2007)
Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relationsEur. J. Oper. Res., 182
D. Hong, Chang-Hwan Choi (2000)
Multicriteria fuzzy decision-making problems based on vague set theoryFuzzy Sets Syst., 114
D. Ezhilmaran, K. Sankar (2015)
Morphism of bipolar intuitionistic fuzzy graphsJournal of Discrete Mathematical Sciences and Cryptography, 18
Xiaolu Zhang, Zeshui Xu (2014)
Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy SetsInternational Journal of Intelligent Systems, 29
Yong Shi, Ying-jie Tian, Gang Kou, Yi Peng, Jianping Li (2011)
Optimization Based Data Mining: Theory and Applications
L. Zadeh (1996)
Fuzzy sets
E. Herrera-Viedma, A. López-Herrera (2006)
Evaluating the Information Quality of Web Sites : A Methodology Based on Fuzzy Computing With Words
Xindong Peng, Yong Yang (2016)
Fundamental Properties of Interval‐Valued Pythagorean Fuzzy Aggregation OperatorsInternational Journal of Intelligent Systems, 31
Peizhuang Wang (2015)
Oriental Thinking and Fuzzy Logic, Celebration of the 50th Anniversary of Fuzzy SetsAnnals of Data Science, 2
Zeshui Xu, R. Yager (2008)
Dynamic intuitionistic fuzzy multi-attribute decision makingInt. J. Approx. Reason., 48
Lixing Yang, Xiang Li, D. Ralescu (2015)
Applications of Decision Making with Uncertain InformationInternational Journal of Intelligent Systems, 30
R. Yager (2014)
Pythagorean Membership Grades in Multicriteria Decision MakingIEEE Transactions on Fuzzy Systems, 22
Zeshui Xu, Jing Chen (2007)
On Geometric Aggregation over Interval-Valued Intuitionistic Fuzzy InformationFourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), 2
Zeshui Xu, R. Yager (2006)
Some geometric aggregation operators based on intuitionistic fuzzy setsInternational Journal of General Systems, 35
R. Yager, Dimitar Filev (1999)
Induced ordered weighted averaging operatorsIEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 29 2
K Atanassov, G Gargov (1989)
Interval-valued intuitionistic fuzzy setsFuzzy Sets Syst, 31
Yi Yang, Heng Ding, Zhen-Song Chen, Yanlai Li (2016)
A Note on Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy SetsInternational Journal of Intelligent Systems, 31
Yong Shi (2001)
Multiple criteria and multiple constraint levels linear programming : concepts, techniques and applications
V. Laković (2020)
Crisis Management of Android Botnet Detection Using Adaptive Neuro-Fuzzy Inference SystemAnnals of Data Science, 7
R. Yager, J. Kacprzyk (1997)
The Ordered Weighted Averaging Operators: Theory and Applications
A. Bera, D. Jana, Debamalya Banerjee, Titas Nandy (2020)
A Two-Phase Multi-criteria Fuzzy Group Decision Making Approach for Supplier Evaluation and Order Allocation Considering Multi-objective, Multi-product and Multi-periodAnnals of Data Science
H. Bustince, P. Burillo (1996)
Vague sets are intuitionistic fuzzy setsFuzzy Sets Syst., 79
G. Wei (2010)
Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision makingAppl. Soft Comput., 10
R. Yager (2002)
The induced fuzzy integral aggregation operatorInternational Journal of Intelligent Systems, 17
Hua Zhao, Zeshui Xu, Mingfang Ni, Shousheng Liu (2010)
Generalized aggregation operators for intuitionistic fuzzy setsInternational Journal of Intelligent Systems, 25
Z. Xu (2007)
Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision makingControl and Decision, 22
K. Atanassov (1999)
Intuitionistic Fuzzy Sets - Theory and Applications, 35
Shyi-Ming Chen, J. Tan (1994)
Handling multicriteria fuzzy decision-making problems based on vague set theoryFuzzy Sets and Systems, 67
Juanjuan Chen, Shenggang Li, Sheng-quan Ma, Xueping Wang (2014)
m-Polar Fuzzy Sets: An Extension of Bipolar Fuzzy SetsThe Scientific World Journal, 2014
Robert Lin (2014)
NOTE ON FUZZY SETSYugoslav Journal of Operations Research, 24
Shu-Jen Chen, C. Hwang (1992)
Fuzzy Multiple Attribute Decision Making - Methods and Applications, 375
K. Atanassov (1986)
Intuitionistic fuzzy setsFuzzy Sets and Systems, 20
R. Yager (1988)
On ordered weighted averaging aggregation operators in multicriteria decision-making, 18
R. Yager (2003)
Induced aggregation operatorsFuzzy Sets Syst., 137
F. Chiclana, E. Herrera-Viedma, F. Herrera, S. Alonso (2004)
Induced ordered weighted geometric operators and their use in the aggregation of multiplicative preference relationsInternational Journal of Intelligent Systems, 19
(2014)
Big data: history, current status, and challenges going forward
LA Zadeh (1965)
338Inf Control, 8
K. Atanassov (2019)
On Interval Valued Intuitionistic Fuzzy SetsInterval-Valued Intuitionistic Fuzzy Sets
R. Yager (1988)
On ordered weighted averaging aggregation operators in multicriteria decisionmakingIEEE Trans. Syst. Man Cybern., 18
Zongben Xu, Yong Shi (2015)
Exploring Big Data Analysis: Fundamental Scientific ProblemsAnnals of Data Science, 2
R. Yager, J. Kacprzyk (1997)
The Ordered Weighted Averaging Operators
Chunqiao Tan, Xiao-hong Chen (2010)
Induced choquet ordered averaging operator and its application to group decision makingInternational Journal of Intelligent Systems, 25
Zeshui Xu (2006)
An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with uncertain multiplicative linguistic preference relationsDecis. Support Syst., 41
(2000)
Bipolar-valued fuzzy sets and their operations
Totan Garai, Dipankar Chakraborty, T. Roy (2019)
Multi-objective Inventory Model with Both Stock-Dependent Demand Rate and Holding Cost Rate Under Fuzzy Random EnvironmentAnnals of Data Science, 6
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
In this paper, the idea of the bipolar Pythagorean fuzzy sets (BPFSs) and its activities, which is a generalization of fuzzy sets, bipolar fuzzy sets (BFSs), intuitionistic fuzzy sets and bipolar intuitionistic fuzzy sets is proposed, with the goal that it can deal with dubious data all the more flexibly during the process of decision making. The key objective of this research paper has presented another variant of the Pythagorean fuzzy sets so called BPFSs. In bipolar Pythagorean fuzzy sets, membership degrees are satisfying the condition 0≤μp+x2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 \le \left( {\mu_{p}^{ + } \left( x \right)} \right)^{2}$$\end{document} + vp+x2≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\left( {v_{p}^{ + } \left( x \right)} \right)^{2} \le 1$$\end{document} and 0≤μp-x2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 \le \left( {\mu_{p}^{ - } \left( x \right)} \right)^{2}$$\end{document} + vp-x2≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\left( {v_{p}^{ - } \left( x \right)} \right)^{2} \le 1$$\end{document} instead of 0≤μpx2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 \le \left( {\mu_{p} \left( x \right)} \right)^{2}$$\end{document} + vpx2≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\left( {v_{p} \left( x \right)} \right)^{2} \le 1$$\end{document} as is in Pythagorean fuzzy sets and 0≤μpx\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 \le \mu_{p} \left( x \right)$$\end{document} + vpx≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$v_{p} \left( x \right) \le 1$$\end{document} as is in the intuitionistic fuzzy sets. Here, negative membership degree means the certain counter-property comparing to a bipolar Pythagorean fuzzy set. Also, the BPFSs weighted average operator and the BPFSs weighted geometric operator to aggregate the BPFSs is developed here. Further a multi attribute decision making technique is developed and the proposed aggregation operators are used. Finally, a numerical methodology for execution of the proposed system is introduced.
Annals of Data Science – Springer Journals
Published: Jun 1, 2023
Keywords: FSs; IFSs; PFs; BFSs; BIFSs; BPFSs; 03E72; 93C42; 90B50
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.