Brain-Computer Interface ResearchBCI-Based Facilitation of Cortical Activity Associated to Gait Onset After Single Event Multi-level Surgery in Cerebral Palsy
Brain-Computer Interface Research: BCI-Based Facilitation of Cortical Activity Associated to Gait...
Ignacio Serrano, J.; del Castillo, M. D.; Bayón, C.; Ramírez, O.; Lerma Lara, S.; Martínez-Caballero, I.; Rocon, E.
2017-04-30 00:00:00
[Motor rehabilitation strategies by means of neuro-modulation paradigms, taking advantage of the motor predictive characteristics of the electroencephalographic signal, are currently subject to extensive research. Such rehabilitation strategies follow a top-down approach in which targeted neurophysiological changes in the central nervous system are expected to induce functional improvement. However, such approach presents a set of specific limitations and barriers in cerebral palsy patients, given that they typically do not have a normal gait and have suffered abnormal brain development. These limitations get even more critical when Single-Event Multilevel Surgery (SEMLS) is performed. After that procedure, surgery patients must re-learn the gait patterns according to a new biomechanical structure. This chapter presents a neuro-modulation paradigm to enhance the reeducation of gait functionality immediately following SEMLS in cerebral palsy patients. The experiments were developed and tested with real patients.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/brain-computer-interface-research-bci-based-facilitation-of-cortical-0CXsW4RXwM
Brain-Computer Interface ResearchBCI-Based Facilitation of Cortical Activity Associated to Gait Onset After Single Event Multi-level Surgery in Cerebral Palsy
[Motor rehabilitation strategies by means of neuro-modulation paradigms, taking advantage of the motor predictive characteristics of the electroencephalographic signal, are currently subject to extensive research. Such rehabilitation strategies follow a top-down approach in which targeted neurophysiological changes in the central nervous system are expected to induce functional improvement. However, such approach presents a set of specific limitations and barriers in cerebral palsy patients, given that they typically do not have a normal gait and have suffered abnormal brain development. These limitations get even more critical when Single-Event Multilevel Surgery (SEMLS) is performed. After that procedure, surgery patients must re-learn the gait patterns according to a new biomechanical structure. This chapter presents a neuro-modulation paradigm to enhance the reeducation of gait functionality immediately following SEMLS in cerebral palsy patients. The experiments were developed and tested with real patients.]
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.