Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy

Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances... The tumour microenvironment thwarts conventional immunotherapy through multiple immunologic mechanisms, such as the secretion of the transforming growth factor-β (TGF-β), which stunts local tumour immune responses. Therefore, high doses of interleukin-2 (IL-2), a conventional cytokine for metastatic melanoma, induces only limited responses. To overcome the immunoinhibitory nature of the tumour microenvironment, we developed nanoscale liposomal polymeric gels (nanolipogels; nLGs) of drug-complexed cyclodextrins and cytokine-encapsulating biodegradable polymers that can deliver small hydrophobic molecular inhibitors and water-soluble protein cytokines in a sustained fashion to the tumour microenvironment. nLGs releasing TGF-β inhibitor and IL-2 significantly delayed tumour growth, increased survival of tumour-bearing mice, and increased the activity of natural killer cells and of intratumoral-activated CD8+ T-cell infiltration. We demonstrate that the efficacy of nLGs in tumour immunotherapy results from a crucial mechanism involving activation of both innate and adaptive immune responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Materials Springer Journals

Loading next page...
 
/lp/springer-journals/combination-delivery-of-tgf-inhibitor-and-il-2-by-nanoscale-liposomal-pkcB3yDoij

References (50)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Nature Publishing Group
Subject
Materials Science; Materials Science, general; Optical and Electronic Materials; Biomaterials; Nanotechnology; Condensed Matter Physics
ISSN
1476-1122
eISSN
1476-4660
DOI
10.1038/nmat3355
Publisher site
See Article on Publisher Site

Abstract

The tumour microenvironment thwarts conventional immunotherapy through multiple immunologic mechanisms, such as the secretion of the transforming growth factor-β (TGF-β), which stunts local tumour immune responses. Therefore, high doses of interleukin-2 (IL-2), a conventional cytokine for metastatic melanoma, induces only limited responses. To overcome the immunoinhibitory nature of the tumour microenvironment, we developed nanoscale liposomal polymeric gels (nanolipogels; nLGs) of drug-complexed cyclodextrins and cytokine-encapsulating biodegradable polymers that can deliver small hydrophobic molecular inhibitors and water-soluble protein cytokines in a sustained fashion to the tumour microenvironment. nLGs releasing TGF-β inhibitor and IL-2 significantly delayed tumour growth, increased survival of tumour-bearing mice, and increased the activity of natural killer cells and of intratumoral-activated CD8+ T-cell infiltration. We demonstrate that the efficacy of nLGs in tumour immunotherapy results from a crucial mechanism involving activation of both innate and adaptive immune responses.

Journal

Nature MaterialsSpringer Journals

Published: Jul 15, 2012

There are no references for this article.