Access the full text.
Sign up today, get DeepDyve free for 14 days.
O.G. Glotov (2019)
Ignition and combustion of titanium particles: experimental methods and resultsPhysics-Uspekhi, 62
O.G. Glotov, N.S. Belousova, G.S. Surodin (2021)
Combustion of Large Monolithic Titanium Particles in Air. I. Experimental Techniques, Burning Time and Fragmentation ModesCombustion, Explosion, and Shock Waves, 57
Valerii N. Kizhnyaev, Tat'yana V. Golobokova, Fedor A. Pokatilov (2017)
Synthesis of energetic triazole- and tetrazole-containing oligomers and polymersChemistry of Heterocyclic Compounds, 53
The combustion of 12 composite propellants of the following composition was studied: 60% ammonium perchlorate of the sieve fraction (180–250 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu$$\end{document}m), 20% energetic binder, and 20% titanium particles of different sizes and types (spongy particles of size \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D=32{-}71$$\end{document} \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu$$\end{document}m and rolled pseudospherical particles of size \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D= 71{-} 500$$\end{document} \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu$$\end{document}m). The burning rates and agglomeration parameters of the metallic component at a pressure of 0.35 MPa in nitrogen and 0.1 MPa in air were determined. It was found that agglomerates of minimum size were formed when using titanium powder with minimum particles size.
Journal of Applied Mechanics and Technical Physics – Springer Journals
Published: Feb 1, 2023
Keywords: titanium particles; combustion; composite propellant; agglomeration; agglomerate size
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.