Access the full text.
Sign up today, get DeepDyve free for 14 days.
Let M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{M}$$\end{document} be a finitely generated free semimodule over a semiring S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{S}$$\end{document} with identity having invariant basis number property with a basis α = {α1,…, αk}. The complement Γ∗¯(M)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)$$\end{document} of the reduced non-zero component graph Γ∗(M)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\Gamma ^ * }\left(\mathbb{M}\right)$$\end{document} of M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{M}$$\end{document}, is the simple undirected graph with V=M∗\{∑i=1kciαi:ci≠0∀i}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$V = {\mathbb{M}^ * }\backslash \left\{ {\sum\limits_{i = 1}^k {{c_i}} {\alpha _i}:{c_i} \ne 0\,\,\forall \,\,i} \right\}$$\end{document} as the vertex set and such that there is an edge between two distinct vertices a=∑i=1kaiαi\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a = \sum\limits_{i = 1}^k {{a_i}{\alpha _i}} $$\end{document} and b=∑i=1kbiαi\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$b = \sum\limits_{i = 1}^k {{b_i}{\alpha _i}} $$\end{document} if and only if there exists no i such that both ai, bi are non-zero. In this paper, we show that the graph Γ∗¯(M)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)$$\end{document} is connected and find its domination number, clique number and chromatic number. In the case of finite semirings, we determine the degree of each vertex, order, size, vertex connectivity and girth of Γ∗¯(M)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)$$\end{document}. Also, we give a necessary and sufficient condition for Γ∗¯(M)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline {{\Gamma ^ * }} \left(\mathbb{M}\right)$$\end{document} to be Eulerian or Hamiltonian or planar.
Applied Mathematics-A Journal of Chinese Universities – Springer Journals
Published: Mar 1, 2023
Keywords: semiring; modules; planar; 16Y60; 06F25; 05C10
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.