Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Computer-Aided Constructions of Commafree Codes

Computer-Aided Constructions of Commafree Codes We determine the maximum size Wk(n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_k(n)$$\end{document} of a commafree code with codeword length k and alphabet size n for a few previously unknown values of k and n. With the aid of modern SAT solver tooling we prove that W4(5)=139\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_4(5) = 139$$\end{document}, W6(3)=113\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_6(3) = 113$$\end{document}, and W12(2)=334\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{12}(2) = 334$$\end{document} and exhibit codes that achieve these bounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Automated Reasoning Springer Journals

Computer-Aided Constructions of Commafree Codes

Journal of Automated Reasoning , Volume 67 (1) – Mar 1, 2023

Loading next page...
 
/lp/springer-journals/computer-aided-constructions-of-commafree-codes-lJBDFied3Y
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0168-7433
eISSN
1573-0670
DOI
10.1007/s10817-023-09662-6
Publisher site
See Article on Publisher Site

Abstract

We determine the maximum size Wk(n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_k(n)$$\end{document} of a commafree code with codeword length k and alphabet size n for a few previously unknown values of k and n. With the aid of modern SAT solver tooling we prove that W4(5)=139\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_4(5) = 139$$\end{document}, W6(3)=113\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_6(3) = 113$$\end{document}, and W12(2)=334\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{12}(2) = 334$$\end{document} and exhibit codes that achieve these bounds.

Journal

Journal of Automated ReasoningSpringer Journals

Published: Mar 1, 2023

Keywords: Commafree codes; Coding theory; SAT Solver; Bounded variable addition

References