Access the full text.
Sign up today, get DeepDyve free for 14 days.
A hybrid double-skin tubular members (DSTM) consist of three composite materials in one section, include fiber-reinforced polymer (FRP) tube outward, steel tube inward and concrete is in between. These three materials give the member unique properties like protect member from harsh environment, reduce the amount of concrete by the presence of an inner steel tube that allowed the passage of services. Therefore, consider sustainable structure elements, as well as the rising strengthening of members and excellent corrosion resistance. This paper presents an experimental and analytical study of twenty-four circular columns with two types; concrete-filled FRP tube (CFFT) and double skin tubular column (DSTC), with a dimension of 100 × 310 mm which constructed and testing under an axial compressive load till failure, with four variables: numbers of layers of outer FRP tube, the compressive strength of concrete, thickness to diameter ratio and void ratio of inner steel tube. The experimental results showed that the concrete was effected confinement in hybrid DSTC led to very ductile behavior of stress–strain relationship and the number of outer FRP layers was the most effective parameters on DSTCs behavior. The nominal confinement ratio was affected by the thickness of outer FRP tube and compressive strength of concrete inside DSTCs.
"Asian Journal of Civil Engineering" – Springer Journals
Published: Nov 20, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.