Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The natural exponential potential (\(C\hbox {e}^{-R/{\lambda _0 }})\) widely exists at micro/nanoscales; this paper studies the interaction potential between a curved-surface body and an outside particle base on the natural exponential potential. Mathematical derivation proves that the interaction potential can be expressed as a function of curvatures. Then, idealized numerical experiments are designed to verify the accuracy of the curvature-based potential. The driving forces exerted on the particle are discussed and confirmed to be a function of curvatures and the gradient of curvatures, which may explain some abnormal movements at micro/nanoscales.
"Acta Mechanica Solida Sinica" – Springer Journals
Published: Apr 1, 2019
Keywords: Theoretical and Applied Mechanics; Surfaces and Interfaces, Thin Films; Classical Mechanics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.