Access the full text.
Sign up today, get DeepDyve free for 14 days.
[In the first Part of this book, we discussed the physical foundations of the DSR in four dimensions. This second Part will be devoted to dealing in detail with the mathematical features and properties of DSR. In this framework, the isometries of the deformed Minkowski space ãM play a basic role. The mathematical tool needed to such a study are the Killing equations, whose solution will allow us to determine both the infinitesimal and the finite structure of the deformed chronotopical groups of symmetries [41–43]. An important result we shall report at the end of this Part – due to its physical implications – is the geometrical structure of ãM as a generalized Lagrange space [12, 13, 44].]
Published: Jan 1, 2007
Keywords: Minkowski Space; Killing Vector; Riemann Space; Transformation Representation; Killing Equation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.