Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Banks, F. McMorris, P. Arabie, W. Gaul (2004)
Classification, Clustering, and Data Mining Applications
P. Griffiths (1989)
Introduction to Algebraic Curves
V. Berkovich (1990)
Spectral Theory and Analytic Geometry over Non-Archimedean Fields
(2004)
Thinking ultrametrically
L. Gerritzen, F. Herrlich, M. Put (1988)
Stable n-pointed trees of projective lines, 91
Fakultät für Architektur, Englerstr. 7, D-76128 Karlsruhe, Germany E-mail: bradley@ifib.uni-karlsruhe
G. Cornelissen, Fumiharu Kato (2005)
The p-adic icosahedronNotices of the American Mathematical Society, 52
John Bruce (1990)
INTRODUCTION TO ALGEBRAIC CURVES (Translations of Mathematical Monographs 76)Bulletin of The London Mathematical Society, 22
Rumely, R: Potential theory on the Berkovich projective line. Book in preparation
V. Berkovich (1999)
Smooth p-adic analytic spaces are locally contractibleInventiones mathematicae, 137
(1974)
Automatische Klassifikation. Studia Mathematica/Mathematische Lehrbücher, Band XXIV
D. MUMFORD (1999)
The Red Book of Varieties and Schemes, (2nd ed., expanded) Lecture Notes in Mathematics, 1358
J. Harris, I. Morrison (1998)
Moduli of curves
Fumiharu Kato (2005)
Non-archimedean orbifolds covered by mumford curvesJournal of Algebraic Geometry, 14
Frank Herrlich (1980)
Endlich erzeugbarep-adische diskontinuierliche GruppenArchiv der Mathematik, 35
L. Gerritzen (1978)
Unbeschränkte Steinsche Gebiete von P1 und nichtarchimedische automorphe Formen.Journal für die reine und angewandte Mathematik (Crelles Journal), 1978
John Deely (1966)
The Red BookOryx, 8
R. Rumely, M. Baker (2004)
Analysis and dynamics on the Berkovich projective linearXiv: Number Theory
P. Bradley (2007)
Families of Dendrograms
A. Mathew (2009)
The p-adic Numbers
B. Dragovich, A. Dragovich (2006)
A p-adic model of DNA sequence and genetic codeP-Adic Numbers, Ultrametric Analysis, and Applications, 1
G. CORNELISSEN, F. KATO (2005)
The p-adic IcosahedronNotices of the AMS, 52
F.Q. GOUVÊA (1993)
p-adic Numbers. An Introduction
F. Kirwan (2000)
MODULI OF CURVES (Graduate Texts in Mathematics 187)Bulletin of The London Mathematical Society, 32
P. Bradley (2007)
Mumford DendrogramsArXiv, abs/0707.3540
L. GERRITZEN (1978)
Unbeschr�nkte Steinsche Gebiete vonJournal für die Reine und Angewandte Mathematik, 297
D. Mumford (1988)
The red book of varieties and schemesLecture Notes in Mathematics
F. Murtagh (2004)
On Ultrametricity, Data Coding, and ComputationJournal of Classification, 21
Institut für Industrielle Bauproduktion, Fakultät für Architektur
Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist p-adic representations of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the p-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are in fact p-adic parameter spaces of dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.
Journal of Classification – Springer Journals
Published: Jun 26, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.