Access the full text.
Sign up today, get DeepDyve free for 14 days.
In addition to the inherent advantages of an outrigger system over conventional framed structural system, damped-outrigger systems (DOS) enhance it further with its agility to resist lateral loads in high-rise buildings. Dynamic response of slender and flexible buildings with DOS induces vibration control in which twisting of core structure is restricted by shear deformation of the damper present at the end of outrigger connected by perimeter columns. In this paper, a 300 m tall core-tube type steel building is modelled and analysed using ETABS based on GB 50011-2010 with singly viscous-damped outrigger system and its predefined optimum location obtained from literature as 240 m (from the base storey). After validation, 25 models are created for parametric studies by increasing number of DOS, changing level of DOS, changing the stiffness of outrigger and elastic properties of non-linear fluid viscous damper (FVD), pall friction damper (PFD), buckling restrained braces (BRB), viscoelastic, improved viscous damper (IVD) including damping coefficient, exponent of damping and effective stiffness. Optimum locations of different outrigger system and adequate properties with respect to supplemental damping devices are determined by carrying out time history analysis for maximization of building stability against high seismic excitation. The maximum response of the building, economic analysis of materials and available space for free planning are used to define two factors, viz., cost-effective response factor (CERF) and overall efficiency factor (OEF) based on which the different models are compared.
Asian Journal of Civil Engineering – Springer Journals
Published: Feb 1, 2023
Keywords: Damped-outrigger system; Core-tube steel building; Dampers; Elastic properties; Time history analysis; CERF; OEF; ETABS
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.