Access the full text.
Sign up today, get DeepDyve free for 14 days.
Periodic frequent pattern mining is an important data mining task for various decision making. However, it often presents a large number of periodic frequent patterns, most of which are not useful as their periodicities are due to random occurrence of uncorrelated items. Such periodic frequent patterns would most often be detrimental in decision making where correlations between the items of periodic frequent patterns are vital. To enable mine the periodic frequent patterns with correlated items, we employ a correlation test on periodic frequent patterns and introduce the productive periodic frequent patterns as the set of periodic frequent patterns with correlated items. We finally develop the productive periodic frequent pattern (PPFP) framework for mining our introduced productive periodic frequent patterns. PPFP is efficient and the productiveness measure removes the periodic frequent patterns with uncorrelated items.
Annals of Data Science – Springer Journals
Published: Apr 23, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.