Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dominance complexes and vertex cover numbers of graphs

Dominance complexes and vertex cover numbers of graphs The dominance complex D(G) of a simple graph G=(V,E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G = (V,E)$$\end{document} is the simplicial complex consisting of the subsets of V whose complements are dominating. We show that the connectivity of D(G) plus 2 is a lower bound for the vertex cover number τ(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tau (G)$$\end{document} of G. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied and Computational Topology Springer Journals

Dominance complexes and vertex cover numbers of graphs

Loading next page...
 
/lp/springer-journals/dominance-complexes-and-vertex-cover-numbers-of-graphs-6kTzxsfGSv

References (31)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
2367-1726
eISSN
2367-1734
DOI
10.1007/s41468-022-00109-2
Publisher site
See Article on Publisher Site

Abstract

The dominance complex D(G) of a simple graph G=(V,E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G = (V,E)$$\end{document} is the simplicial complex consisting of the subsets of V whose complements are dominating. We show that the connectivity of D(G) plus 2 is a lower bound for the vertex cover number τ(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tau (G)$$\end{document} of G.

Journal

Journal of Applied and Computational TopologySpringer Journals

Published: Jun 1, 2023

Keywords: Dominance complex; Independence complex; Alexander dual; Vertex cover number; Primary 05C15; Secondary 55U10

There are no references for this article.